Skip to content

2

Back in 1994, the U.S. Army base at Fort Ord was closed in one of the base closure events that occur every once in a while. UC Santa Cruz (UCSC) acquired some 600 acres of the former base to establish the Fort Ord Natural Reserve, which serves as an outdoor laboratory and teaching space for students of all ages. University students from UCSC and California State University Monterey Bay (CSUMB) take classes and have internships on the Reserve. Kindergarten students visit the Reserve for what may well be their first experience of Nature. And I take my community college students there every year.

Coastal scrub habitat at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

This year, Joe Miller, the reserve manager, had a lot of things for us to learn about, and we were kept busy all day. The first thing we did, after an introduction to the reserve, was hike to the first of several areas where Joe had set some rodent traps the night before.

There were 30 of these Sherman traps to check.

Sherman traps at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

They are live traps, baited to lure in a rodent. The doors shut on the rodent once it ventures inside to grab some seed.

There's a super high-tech method to getting a live rodent out of a trap without hurting either the rodent or the human. You hold the trap vertically, open the top end, slip a plastic bag over the open end, make sure there are no escape openings, then flip the trap over so the rodent falls into the bag. And voilà, instant mouse in a bag!

Students observe Joe's mouse in a bag at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

Then you work the rodent head-first into a corner of the bag with one hand, and reach into the bag and approach it from the back end. Follow the backbone forward, then grab the rodent by the scruff of the neck.

Joe holds a scruffed California deermouse (Peromyscus maniculatus)
2020-03-06
© Allison J. Gong

Holding a rodent by the scruff of the neck allows the biologist to handle the animal safely and minimizes the probability of getting bitten.

Scruffed rodent at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

We caught three or four deermice, but the cutest rodent we saw was a pocket mouse (Chaetodipus californicus). Joe didn't bother with gloves because, as he said, these guys are really mellow. And it really was! He handed it to us and we took turns holding it.

Pocket mouse (Chaetodipus californicus) at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

Cute little guy almost fell asleep on a student's arm.

Pocket mouse (Chaetodipus californicus) at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

I think it's called a pocket mouse because it's so cute you want to put it in your pocket and take it home.

We had to let the rodents go because Joe had other things for us to do. In addition to the rodent traps, Joe had set up pitfall arrays to catch herps (reptiles and amphibians). A pitfall array consists of two strips of aluminum flashing set up in the shape of a capital T. At each end of the T there is a pitfall trap. The critter runs or slithers along the flashing and then falls into the trap, which is a small bucket buried so the lip is just at ground level.

Joe shows us a pitfall array at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong
A student checks a pitfall trap
2020-03-06
© Allison J. Gong

We got skunked on the pitfall traps--all of them were empty. We did, however, get to see herps. Joe showed us a couple of tiger salamanders, which he had permits to keep as teaching animals. These two animals are hybrids between the native tiger salamander (Ambystoma californiense) and a salamander that was introduced from Texas into California to be used as bait. As happened quite often, the bait species took hold in its new habitat and is proving to be a nuisance. In their larval stage they are voracious predators, gobbling up the larvae of other amphibians including those of endangered species such as the red-legged frog. In the area of FONR, pretty much all of the tiger salamanders are hybrids to some degree.

Joe's two "pet" salamanders are very cute!

As with all other amphibians, tiger salamanders require a variety of habitats to complete their life cycle. They reproduce in water, and the larvae live in water. California has distinct wet and dry seasons, and the salamanders must find vernal pools where the water will last long enough for their larvae to metamorphose into the terrestrial adult form. Sometimes the pools don't persist long enough, and in very dry years the pools may not form at all. During the dry season, tiger salamanders may estivate underground, waiting until the weather gets cool and damp enough for them to emerge from burrows and forage on insects and small vertebrates.

One of the students had her heart set on seeing horned lizards, and her wish came true. Some UCSC interns working on the horned lizard mapping project caught a couple of small lizards for us to see. The larger adults aren't coming aboveground yet.

Horned lizard (Phrynosoma blainvillii) at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

Like the tiger salamanders, the horned lizards face an uncertain future of their own. Their main prey are native ants. California has been invaded by Argentine ants--those are the little black ants that get into houses. The Argentine ants are extremely competitive and form supercolonies, wherein two or more adjacent colonies will merge underground and function as a single colony with multiple queens. They can and do outcompete the native ant species, and predators don't seem to like them. Unfortunately, the horned lizards don't eat the Argentine ants. If the lizards' food source is threatened by the ants, then the lizards could be in big trouble.

One of the things Joe wanted to show us was a plant with a tiny purple flower, that is just now starting to bloom.

Gilia tenuiflora ssp. arenaria at Fort Ord Natural Reserve
2020-03-06
© Allison J. Gong

This little plant, called greater yellowthroat gilia or sand gilia, is a California endemic species, found nowhere else. The State of California lists it as threatened, and the federal government lists it as endangered. It's a pretty plant, growing low to the ground because although it's March, we haven't had any rain for about eight weeks. And this is supposed to be our rainy season. Joe showed us some Gilia plantlets that were grown in greenhouses and had plenty of water, and they were three or four times as tall as the ones we saw in the field.

There is a lot of very interesting work going on at FONR these days, and it's exciting for me to see how many students are involved. Some of my students said they would contact Joe about internship opportunities, and I hope they do so. If I'm teaching Ecology again next spring, we're definitely coming back to Fort Ord, and I think we'll do an overnight camping trip. I'm sure the reserve is a completely different place once the sun goes down!

1

People call them air rats or trash birds, but I really like gulls. Especially the western gull (Larus occidentalis), known colloquially among birders as the WEGU. Yes, gulls eat garbage, but that's only because humans are so good at making garbage and leaving it all over the place. Other gulls may travel quite far inland--in fact, the state bird of Utah is the California gull (Larus californicus)--but the WEGU is a California Current endemic species. This means that its natural food sources are the fishes and invertebrates of the California Current, which flows southwards along the west coast of North America. As a result, it lives in only a very narrow strip of coastline, nesting on cliffs and restaurant roofs.

Case in point. Yesterday afternoon I was at Moss Landing with my marine biology students. We had hiked along the road, over the dune to the beach, down the beach a ways, and returned over the dune to circle back to our starting point. The last item of note that we all watched was a western gull hunting along the shoreline of the Moss Landing harbor.

It had grabbed a crab. It looked like a rock crab, but I couldn't tell what species.

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

The crab wasn't dead, and was thrashing around enough to make it difficult for the gull to get a good grip on it.

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

Oops!

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

The crab gets a reprieve!

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

But the gull didn't give up. It reached down, came back with the crab in its beak, and then flew off.

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

Sometimes it pays to be persistent!

2

The Carmel is a lovely little river. It isn't very long, but in its course it has everything a river should have. It rises in the mountains, and tumbles down a while, runs through shallows, is dammed to make a lake, spills over the dam, crackles among round boulders, wanders lazily under sycamores, spills into pools where trout live, drops in against banks where crayfish live. In the winter it becomes a torrent, a mean little fierce river, and in the summer it is a place for children to wade in and for fishermen to wander in. . . . It's everything a river should be.

-- John Steinbeck, Cannery Row

Every Spring semester when I teach my Ecology class, I try to develop a new field trip activity, or modify an existing one. Some activities I'll probably always keep, either because they are really popular with the students or (more likely 'and') because I think they are good learning experiences, but I can also swap out some of the others if better options come along. There's also some fine-tuning that occurs along the way, as I tweak things to improve what I hope is already a good field trip. As much fun as it is to play outside instead of being stuck in a classroom, the point of the field trips is to learn something about ecology--a new habitat, current research in particular fields of study, challenges to restoration and conservation, and the like. Since citizen science has become the catch phrase du jour in the first fifth of the 21st century, I feel that it is important to give students opportunities to participate in some of the science activities available to the wider community.

The Carmel River
2019-03-15
© Allison J. Gong

All of which explains why the students and I made the hour-long trip down to a location called Garland Ranch, on the Carmel River. Back in the fall I heard of a new project starting up in Monterey County, to monitor water quality along the Carmel River. The project, called Watershed Guardians, is operated from the Pacific Grove Museum of Natural History. Its goal is to protect steelhead trout in the river by measuring parameters that indicate suitability for the various life history stages of the fish. Like many programs of its kind, Watershed Guardians also has a secondary goal of getting students as young as middle-schoolers out of the classroom and into the field to do some real science. The two goals converge quite nicely, as a big part of the learning experience for the students is developing an understanding ownership of their local river and watershed. Hopefully that sense of ownership evolves into one of responsibility and stewardship. And it is a well-known adage that one way to get adults to care about something is to get their kids to care about it first, so all of these citizen science programs directed at school-age children have the benefit of attracting the attention of people old enough to vote and direct policy decisions. Win-win-win!

Our guide for the day was Matt, who works at the PGMNH and led the teacher training session I attended last fall. He met us at Garland Ranch, where we divided the class into four groups. Matt had arrived with two pairs of backpacks, each pair consisting of one light and one dark. The light and dark backpacks contained equipment and kits for different suites of tests. Each group of students would start with one backpack, either light or dark, and then swap with a different group when finished. That way every group ran all of the tests: pH, temperature, turbidity, DO (dissolved oxygen), alkalinity, and salinity. Some of the tests were quite simple, and others were more complicated.

Team 4 conferring with Matt
2019-03-15
© Allison J. Gong

The four sampling sites at the Garland Ranch location were close together near the vehicle bridge. We've had a lot of rain this winter and the river has been running high. As a result a lot of the sand had been washed away, making the beach fairly steep and rather narrow. To make matters even more difficult, the poison oak has been extremely crafty--its bare sticks are everywhere, looking totally innocent, encroaching on trails and twined around trees. It took some attention to make sure I didn't brush up against any of it while moving up and down the beach.

Collecting a water sample
2019-03-15
© Allison J. Gong

Careful sampling requires teamwork!

The final step in the program is for the students to enter their data into the Watershed Guardians database. The whole point of the program is for these data to be shared publicly for all to use. It's important for students to see the activity through to the end and to know that the work they did will actually be going somewhere. We'll take care of that task next week!


This semester I am teaching a lab for a General Biology course for non-majors. I polled my students on the first day of lab, and their academic plans are quite varied: several want to major in psychology (always a popular major), some want to go into business, a few said they hope to go into politics or public policy, and some haven't yet selected a field of study. I think only one or two are even considering a STEM field. Which is all just to say that I have a group of students whose academic goals don't have much in common except to study something other than science. Several of them are the first in their families to go to college, which is very exciting for them and for me.

Most of the activities we do in this class are lab studies. Last week, for example, the students extracted DNA from a strawberry (100% success rate for my class, thank you very much) and then used puzzles and 3-dimensional models to understand the structure of DNA. We do have a couple of field trips scheduled, though, which are the days that students really look forward to. Outside the classroom is where most of the fun stuff happens.

Today I took my class to the beach! We were there to do some monitoring for LiMPETS (Long term Monitoring Program and Experiential Training for Students). For the past few years I've taken my Ecology students out to the intertidal to do the rocky intertidal monitoring. The General Bio students don't have the background needed for the intertidal monitoring and I don't have the classroom time to train them, so we take them to do sand crab monitoring instead. This is a simpler activity for the students, although the clean-up on my end is a lot more intensive even though I get them to help me.

Dorsal view of Emerita analoga at Franklin Point
15 June 2018
© Allison J. Gong

Emerita analoga is a small anomuran crab, more closely related to hermit and porcelain crabs than to the more typical brachyuran crabs such as kelp and rock crabs. It lives in the swash zone on sandy beaches and migrates up and down the beach with the tide. Its ovoid body is perfectly shaped to burrow into the sand, which this crab does with much alacrity. The crabs use their big thoracic legs to push sand forward and burrow backwards into the sand until they are entirely covered. They feed on outgoing waves, sticking out their long second antennae (which can be almost as long as the entire body) and swivel them around to capture suspended particles.

Emerita analoga feeding in an aquarium

We went out to Seacliff State Beach to count, measure, and sex sand crabs. The protocol is to lay out a 50 m transect along the beach, roughly parallel to the shore where the sand remains wet but isn't constantly covered by waves. Students draw random numbers to determine their position along the horizontal transect and venture out into the ocean, measuring the distance between the transect and the point where they are getting wet to the knees. Then they divide that distance by 9 to yield a total of 10 evenly spaced sampling points along a line running perpendicular to the transect.

Students collecting sand crabs at Seacliff State Beach
28 September 2018
© Allison J. Gong

The corer is a PVC tube with a handle. It is submerged into the sand to a specified depth and collects a plug of sand that is dumped into a mesh bag. Sand is rinsed out of the bag and the crabs remain behind. Students then have to measure and sex each of the crabs.

Rinsing the bag
28 September 2018
© Allison J. Gong
"What's in the bag?"
28 September 2018
© Allison J. Gong

Each crab is classified as either a recruit (carapace length ≤9 mm) or a juvenile/adult (carapace length >9 mm). Students get to use calipers to measure carapace length, which they enjoy. Adult crabs are sexed, and females are examined for the presence of eggs.

Students measure a sand crab (Emerita analoga)
28 September 2018
© Allison J. Gong

A sand crab's sex is determined by the presence or absence of pleopods, abdominal appendages that females use to hold onto eggs. If a female is gravid, the eggs are visible as either bright orange or dull tannish masses tucked underneath the telson (see below):

Ventral view of gravid female Emerita analoga
15 June 2018
© Allison J. Gong

The pointed structure in the photo above is the telson. You can see the tan eggs beneath the telson. They look like they would fall off, but they adhere together in a sticky mass until they are ready to be released. Adult females have pleopods whether or not they are gravid, making it easy to sex the crabs even when they are not reproductive.

Most of the larger crabs today were gravid females and could be sexed with a quick glance at the ventral surface. Sexing the smaller individuals requires a lot more effort. The crab's telson has to be gently pulled back to expose the abdomen, which isn't easy because the crab doesn't like having its parts messed with. In fact, one of the ways to determine whether or not a crab playing dead is really dead is to pry up its telson--a dead crab will let you without making a fuss, while a live one will start thrashing about.

Students sexing a sand crab (Emerita analoga)
28 September 2018
© Allison J. Gong

It was a good day to spend time at the beach. The weather got better as we worked and the water wasn't very cold. The students had a good time splashing around in the waves, and they all fell in love with the crabs. There were a few sad moments when crabs got chopped in half by the edge of the corer, but the vast majority were released back to the ocean unharmed. From a teaching perspective, I was happy to give the students an opportunity to do some outdoor learning. After all, the world is our biggest and best classroom. Most students learn best when they get to actually 'do' science, and even though most of this group will not go on to complete a science major, they hopefully have a better appreciation of what it is like to collect real data as citizen scientists.

1

Monday 26 March 2018 -- Memorials

Southwest District of Columbia
© Google Maps

On Monday we ventured south of the Mall to the Tidewater area, where an extension of the Potomac river floods into a basin and forms a tidal pond. This area is where the famous cherry trees of Washington, DC, are concentrated, and we hoped to catch some of the bloom. Alas, it had snowed about a week earlier, there were still patches of snow on the ground, and that day it was cold and windy. The cherry trees were thinking about blooming but hadn't gotten around to making any real effort yet. It was sunny, though, and nice weather for walking around, since we were bundled up.

About a week too early!
26 March 2018
© Allison J. Gong

Jefferson Memorial  Our first stop was the Thomas Jefferson Memorial. We skipped the Washington Monument because it didn't look very interesting and I didn't want to wait in the line to go up to the top, from where the view must be spectacular. I did, however, take the obligatory photo of the monument itself.

Washington Monument
26 March 2018
© Allison J. Gong

The Jefferson Memorial occupies a beautiful spot along the tidewater shore. It must be truly beautiful when the cherry trees are blooming.

Jefferson Memorial
26 March 2018
© Allison J. Gong

Inscription from interior of the Jefferson Memorial
26 March 2018
© Allison J. Gong

Inside the rotunda the walls are inscribed with some of Jefferson's writings. The walls are curved and tall, making them difficult to photograph. Another difficulty I had with this memorial was reconciling Jefferson's words about freedom with the knowledge that he was a slaveholder. While I do think it's unfair to judge historical personages by the moral standards of today, I can't really wrap my brain around that particular cognitive dissonance. This one particular inscription, though, I thoroughly agree with. It seems pretty clear to me that Jefferson never intended the U.S. Constitution to be a static document that could not be amended as required. Rather the opposite, in fact.

Franklin Delano Roosevelt Memorial  My favorite memorial of the day was the one for FDR. I liked it because it didn't have present me with any of the minor squicks that I got at the Jefferson memorial. Not only that, but unlike the other presidential memorials this one isn't a single giant edifice that people walk up to and then away from. The FDR memorial consists of life-sized sculptures mounted at eye level, so passersby can interact with them as they wander along the path. Several of FDR's quotes are inscribed along walls interspersed with fountains. All this gives us a memorial that we can experience at a human level and gives us a feel for who FDR was as a person, not just a president.

FDR Memorial
26 March 2018
© Allison J. Gong

FDR Memorial
26 March 2018
© Allison J. Gong

I liked how Eleanor Roosevelt was memorialized, too.

Sculpture of Eleanor Roosevelt at the FDR Memorial
26 March 2018
© Allison J. Gong

My favorite part of the FDR Memorial was at the far end. Walking along the path you first encounter a series of columns that appear to be covered in bronze plates. The columns and the frieze behind them commemorated FDR's federal public works projects, a response to the Great Depression.

Bronze frieze and die rolls at the FDR Memorial
26 March 2018
© Allison J. Gong

The really cool thing about this part of the memorial is that the columns are actually the die rolls used to make the panels on the frieze wall. I didn't see any signage explaining what was going on, so the visitors have to figure it out for themselves. This was another of the things that made this particular memorial feel personal.

Here's one part of one die roll:

26 March 2018
© Allison J. Gong

and here is the panel cast from it:

26 March 2018
© Allison J. Gong

Isn't that cool?

Martin Luther King Memorial The MLK Memorial consists of a single large sculpture of the man in front of a wall inscribed with bits of his writings and speeches. The sculpture itself is very imposing and grand, very different from the more personal and humble feeling I took from the FDR Memorial.

Sculpture of Martin Luther King, with the Washington Monument in the background
26 March 2018
© Allison J. Gong

From the front of the sculpture he really seems to be looking down on us. He was a preacher, and this expression makes me feel like I'm about to hear a sermon. I don't enjoy being preached to, so this is not a comfortable feeling for me.

MLK Memorial
26 March 2018
© Allison J. Gong

Like the Jefferson Memorial, this one left me feeling cold. It imparts a feeling for who MLK was as a preacher and leader, but nothing about who he was as a person. Most of the inscriptions on the wall were ones that we're all familiar with. The one that struck me most strongly was this one:

MLK Memorial
26 March 2018
© Allison J. Gong

I like this particular quote because I think we often forget how easy it is to be a good person when things are going well, and how bloody difficult it is when things aren't going well. It may not be fair to judge people by how they behave in times of adversity, but it is fair to say that we are generally not at our best in those situations. And yet, there is something to be said about how having to endure hardship often shows us our true selves. It can be a difficult thing to face up to. For me, the power of MLK's message comes from his exhortations to us to be better people, and a society, than we have been. We may have come a long way, baby, but we still have a long way to go.

How does a group of people go about trying to save a federally endangered species? The answer, of course, depends on the species. However, you can bet your bottom dollar that it takes a tremendous effort over many years by many dedicated and talented people, all of whom know that in the end their work may not succeed. Ultimately it is society who decides whether or not such efforts, costly in both person hours and dollars, are worthwhile. After all, we are the people who vote elect the legislators to decide how our tax monies are spent. Not only that, but which of the many endangered species should we try to save? Can we save them all? Should we try to anyway? If not, then how do we decide which species are worth the effort? And what should we do about the species that are deemed unworthy?

Erick (green jacket) gives my students an introduction to the weir on Scott Creek
9 March 2018
© Allison J. Gong

Today I took my Ecology students to locations on Scott Creek and Big Creek in northern Santa Cruz County, where biologists are working on saving the coho salmon, Onchorhynchus kisutch. Our guide for the day was Erick, a fisheries biologist with the National Marine Fisheries Service (NMFS), a division of the National Oceanographic and Atmospheric Administration (NOAA). Erick's job is to maintain the genetic diversity of this population, which occupies the southernmost part of the coho's range in North America. The coho is a federally endangered species in California, and this southern population represents the species' best chance for surviving and adapting to the ocean and river conditions that are predicted due to climate change.

Erick explaining how the fish trap works
9 March 2018
© Allison J. Gong

Our first stop was at the weir and fish trap on Scott Creek. There are actually two fish traps in this location: one to catch adult salmon swimming upstream and one to catch smolts migrating downstream (more about that in a bit). Adult salmon returning to spawn come into the trap and end up in the box to Erick's right. Every day during the spawning season at least two people come down to the weir to count, measure, sex, and weigh each fish in the trap. Then the salmon are trucked up to the hatchery, where they will be used for spawning under controlled conditions. The stretch of creek behind Erick is located between the fish traps; there are no salmon in it because the adults are all captured by the large trap, and the outgoing smolts are caught in the upstream trap.

Upstream end of the smolt trap on Scott Creek
9 March 2018
© Allison J. Gong

At this point the entire creek passes through those screened panels, and the fish are directed into this box:

Smolt trap on Scott Creek
9 March 2018
© Allison J. Gong

The smolts are netted out, put into buckets, and carried downstream past the adult fish trap. From there they migrate out to the ocean, and if all goes well they will spend the next two years feeding and growing before they return to the creek as adults.

Adult coho salmon caught in the trap are trucked up to the hatchery, which is located on Big Creek. There has been a hatchery on this site since the early 1940s. The current installation is operated by the Monterey Salmon and Trout Project, with permission of the landowners and from the state. Erick and his fellow fisheries biologists are charged with maintaining the genetic diversity within this small population of fish. They do so by keeping track of who mates with whom and making sure that closely related individuals do not mate. Each female salmon's eggs are divided into separate batches to be fertilized with as many as four males. Each male's sperm can be used to fertilize up to four females' eggs.

Fertilized eggs are incubated in a chamber set at 11°C and 100% humidity; in other words, they are not incubated in water. Once they hatch they are transferred to trays of water, where they remain until they have used up their entire yolk sac and need to be fed. Each of these trays contains one family of fry; in other words, all of the babies from one female-male mating.

Erick shows us trays containing salmon fry
9 March 2018
© Allison J. Gong

From these trays the fishlets move into indoor tanks and then outdoor tanks. They are fed, and this is when they develop one of the bad habits of all hatchery fish: they get used to food coming from above and drifting down. In the wild, a juvenile salmon in a stream feeds on aquatic insects, small crustaceans, and the like. Many of their favored prey items are benthic, but they will also feed on insects at the surface. To do so, they have to spend time going up and down in the water column, when they are at risk of being eaten themselves. Hatchery-reared juveniles don't have predators to deal with and have learned that food lands on the surface of the water. They don't understand the need to remain hidden, and many of them get picked off by birds and other fish.

As a safeguard against an extremely poor return of spawning adults, each year some portion of the juveniles are kept at the hatchery and grown to adulthood on-site. This means that even if very few fish return to the river, or if there aren't enough females, the captive breeders can be used to make up the difference. This year, the 2017-2018 spawning season has so far been successful. As a result there were adult salmon that, for whatever reason, were not used as breeders. Today just happened to be the day that they would be returned to the creeks, where they may go ahead and spawn, and we got to watch part of it.

Returning to the story of the outmigrating juveniles, one of their biggest challenges is smoltification (my new favorite word), the process of altering their physiology in response to increasing salinity as they move towards the ocean. This is a unidirectional change in physiology for salmon; once they have fully acclimated to life in the ocean they cannot re-acclimate to the freshwater stream where they were born. Smoltification takes place over a few to several days. The hatchery has several year-old fish ready to smoltify (I think that's the verb form of the word) and will be releasing them in several batches at approximately two-week intervals starting later in March. The outgoing fish are tagged so that when they return in two years the hatchery staff will be able to determine which batch they came from, helping them understand what release conditions resulted in the greatest survival and return of adults. Kinda cool, isn't it?

The bad news is that as of right now any baby fish released into the creek won't be able to get to the ocean. We haven't had enough rain recently to break through the sand bar that develops on the beach where Scott Creek runs into the sea.

Scott Creek Beach
9 March 2018
© Allison J. Gong

It will take some decent rainfall to generate enough runoff to breach the sand bar. A good strong spring tide series would help, if it coincides with a big runoff event. We are supposed to get some rain this weekend and into early next week. I hope it's enough to open the door to the ocean for the smolts. In the meantime, they will hang out on the other side of the highway in the marsh.

Scott Creek just upstream of where it crosses under Highway 1
9 March 2018
© Allison J. Gong

They'll have to wait until the ocean becomes available to them, and in the meantime will be vulnerable to predators, especially piscivorous birds. Hopefully the rains in the near forecast will be heavy enough to open up the sand bar and the smolts will be able to continue their journey out to sea. Good luck, little guys!

Since 2000 the first Saturday in May is Snapshot Day in Santa Cruz. This is a big event where the Coastal Watershed Council trains groups of citizen scientists to collect water quality data on the streams and rivers that drain into the Monterey Bay National Marine Sanctuary, then sets them loose with a bucket of gear, maps, and data sheets. The result is a "snapshot" of the health of the watershed. As we did last year, my students and I were among the volunteers who got to go out yesterday and play in coastal streams. This year there were 13 (+1) groups sent out to monitor ~40 sites within Santa Cruz County. For reasons I don't entirely understand four sites in San Mateo County (the county to the north along the coast) were included in this year's sampling scheme; hence the +1 designation. Since I routinely haunt the intertidal in this region I took the opportunity to become more familiar with the upstream parts of the county and volunteered to sample at these northern sites. It just so happened that I was teamed with two of my students, Eve and Belle, for yesterday's activities.

Of our four sites, two were right on the beach and two were up in the mountains. Thus our "snapshots" covered both beach and redwood forest habitats. Here are Belle and Eve at our first site, Gazos Creek where it flows onto the beach:

Beel and Eve at Gazos Creek, our first site. 7 May 2016 © Allison J. Gong
Belle and Eve at Gazos Creek, our first site.
7 May 2016
© Allison J. Gong

After heavy rains the water draining through the watershed breaks through the sand bar and the creek flows into the ocean. Yesterday the sand bar was thick and impenetrable, at least to the measly amount of rain we'd had in the past 24 hours.

Gazos Creek as it flows onto the beach. After rains it breaks through the sand bar and flows into the ocean. 7 May 2016 © Allison J. Gong
Gazos Creek as it flows onto the beach. After rains it breaks through the sand bar and flows into the ocean.
7 May 2016
© Allison J. Gong

At each site we collected two water samples, for nutrient and bacteria analyses, and the following field measurements:

  • air and water temperature
  • electrical conductivity
  • pH
  • dissolved oxygen (DO)
  • water transparency

Snapshot Day data sheet for 7 May 2016 © Allison J. Gong
Snapshot Day data sheet for our Gazos Creek (forest) site.
7 May 2016
© Allison J. Gong

Here Eve is measuring conductivity in Gazos Creek (beach site):

Eve takes a conductivity measurement at Gazos Creek (beach site). 7 May 2016 © Allison J. Gong
Eve takes a conductivity measurement at Gazos Creek (beach site).
7 May 2016
© Allison J. Gong

Most of the equipment we used to take the field measurements was simple and straightforward: pH strips and a thermometer, for example. Even the conductivity meter was easy to use. You just turn it on, let the machine zero out, and stick it in the creek facing upstream so that water flows into the space between the electrodes. Here's Belle taking a conductivity measurement at our Gazos Creek (forest) site:

Belle measures conductivity at our Gazos Creek (forest) site. 7 May 2016 © Allison J. Gong
Belle measures conductivity at our Gazos Creek (forest) site.
7 May 2016
© Allison J. Gong

The only tricky field measurement was the one for dissolved oxygen (DO). This involved collecting a water sample (easy enough), inserting an ampoule containing a reactive chemical into the sample tube, breaking off the tip of the ampoule so that water flows into the tube, and gently mixing the contents of the ampoule for two minutes. Then you compare the color of the ampoule with a set of standards in the kit to estimate the DO level in mg/L (=ppm).

Standards for measuring dissolved oxygen. 7 May 2016 © Allison J. Gong
Standards for measuring dissolved oxygen.
7 May 2016
© Allison J. Gong

Our second and third sites were up in the mountains, at Old Woman's Creek and Gazos Creek (forest). With all the rain we had over the winter the riparian foliage has exploded into green. It was all absolutely lush and glorious. How lucky we were to spend the day in such surroundings!

Gazos Creek in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Gazos Creek in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong

Gazos Creek in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Gazos Creek in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong

And there were a great many banana slugs! All of them were solid yellow, with no brown spots. At one point there were so many slugs that we had to be extremely careful not to step on them.

Banana slug (Ariolimax sp.) in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Banana slug (Ariolimax sp.) in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong

Banana slug (Ariolimax sp.) in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Banana slug (Ariolimax sp.) in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong

Our fourth and final site was Whitehouse Creek, which flows into the Pacific Ocean to the south of Franklin Point. We had about a 10-minute hike to the creek from the road. By that point it had been raining for quite a while. Although we were protected from the rain by the trees when we were up in the forest, when we walked out to the field to the beach we were lucky it had eased to a light sprinkle.

Whitehouse Creek where it flows into the Pacific Ocean. 7 May 2016 © Allison J. Gong
Whitehouse Creek where it flows into the Pacific Ocean.
7 May 2016
© Allison J. Gong

After we finished our sampling we all agreed that we had to have gotten the most picturesque sites. None of the other teams got to visit both forest and beach for their sampling! We didn't drop off our samples and equipment until 14:00, a couple of hours later than the other groups, but who would complain about having getting to spend the day tromping through the forest AND the beach?

Our feet! 7 May 2016 © Allison J. Gong
Our feet!
7 May 2016
© Allison J. Gong

In recent years, citizen science has become a very important provider of biological data. This movement relies on the participation of people who have an interest in science but may not themselves be scientists. There is some training involved, as data must be collected in consistent ways if they are to be useful, but generally no scientific expertise is required. The beauty of citizen science is that it allows scientists and science educators to share the experience of discovery with people who might not otherwise know what it's like to really examine the world around them. I think it is a great step towards creating a less science-phobic society, one in which science informs policy on scientific matters.

LiMPETS stands for "Long-term Monitoring Program and Experiential Training for Students." The program seeks both to give students experience doing real science and to establish baseline and long-term ecological data for California's sandy shores and rocky intertidal areas. As an intertidal ecologist myself, I naturally wanted my students to participate in the rocky intertidal monitoring.

The LiMPETS coordinator for Santa Cruz and Monterey Counties is a woman named Emily Gottlieb. She and I decided to have my class monitor the site at Davenport Landing. Emily came to class two weeks ago to train the students in identifying the relevant organisms and recording the data.

Practice tidepooling, training for real-life monitoring in the intertidal. 15 April 2016 © Allison J. Gong
Practice tidepooling, training for real-life monitoring in the intertidal.
15 April 2016
© Allison J. Gong

Tidepooling is easy and comfortable when you do it inside a classroom seated at a table. But today was all about the real thing. It was overcast and breezy when we met up with Emily at 09:30 and headed out to the site. At first the students seemed to be a little skeptical about the whole thing.

Students get their first look at their morning workplace. 29 April 2016 © Allison J. Gong
Students get their first look at their morning workplace.
29 April 2016
© Allison J. Gong

We were extremely fortunate to be joined this morning by Dr. John Pearse, Professor Emeritus of Biology at UC Santa Cruz, one of my graduate advisors, and the founder of LiMPETS. Dr. Pearse has been monitoring some sites, including this one at Davenport Landing, since the 1970s. He is THE person to talk to about intertidal changes in California over the past 40 years.

Years ago John set up permanent transect lines and plots at Davenport Landing, marking the origin of each transect with a bolt. The first thing we had to do when we got to the site was find the bolt. Then John ran out the transect line to the lowest point that students could work safely, given the conditions of tide and swell; this happened to be about 15 meters.

Dr. John Pearse runs out the vertical transect line. 29 April 2016 © Allison J. Gong
Dr. John Pearse runs out the vertical transect line.
29 April 2016
© Allison J. Gong

For the vertical transect, 1/2-meter square quadrats were placed at each meter. Some organisms were counted as individuals and others were marked as either present or absent in each of the 25 small squares within each quadrat. Emily gave the students their assignments and data sheets, and they spread out along the transect line.

Students working the vertical transect. 29 April 2016 © Allison J. Gong
Students working the vertical transect.
29 April 2016
© Allison J. Gong

LiMPETS sampling 29 April 2016 © Allison J. Gong
LiMPETS sampling
29 April 2016
© Allison J. Gong

LiMPETS sampling 29 April 2016 © Allison J. Gong
LiMPETS sampling
29 April 2016
© Allison J. Gong

LiMPETS sampling 29 April 2016 © Allison J. Gong
LiMPETS sampling
29 April 2016
© Allison J. Gong

Aside from the experience of learning how to do this kind of data collection, I hope the students understand what a privilege it is to have been in the field with John Pearse. He has such a thorough understanding of the intertidal that he is a treasure vault of knowledge. Here he is explaining what owl limpets are all about:

Dr. John Pearse explains what owl limpets are and how to find them. 29 April 2016 © Allison J. Gong
Dr. John Pearse explains what owl limpets are and how to find them.
29 April 2016
© Allison J. Gong

Interestingly, we didn't find many owl limpets. And certainly not any of the big ones that I see all the time at Natural Bridges. John said that this is one of the differences between a protected area (Natural Bridges) and an unprotected one (Davenport Landing). Collecting is not allowed at Natural Bridges, and the owl limpets are left unmolested--by humans, at least--to grow large (10+ cm long is not uncommon). On the other hand, people do collect at Davenport and I've heard it said that owl limpets are good to eat; today we saw fewer than a dozen owl limpets and they were all small, none larger than 3 cm long.

The sun came out after a while, but the wind also picked up. The tide came up as well, and some of the students got more than a little wet. Overall they were real troopers, though, and I didn't hear much complaining. Next week is the last lab of the semester, and we'll be participating in another citizen science project. But that's a tale for another day.

I did take advantage of the beautiful setting to have one of Emily's LiMPETS volunteers (and a former student of mine!) take our class photo. Here we are, the Bio 11C class of 2016!

Class photo, taken at Davenport Landing. 29 April 2016 © Allison J. Gong
Class photo, taken at Davenport Landing.
29 April 2016
© Allison J. Gong

2

For as long as sentient humans have walked across the surface of the planet, they have observed the world around them. Quite often these observations had direct life-or-death consequences, as most of survival had to do with finding food while not becoming someone else's dinner. Fast forward a few million years and we find ourselves mired in technology, often interacting with the outside world through some sort of digital interface. And yes, I totally get the irony of writing that statement in a blog. Be that as it may, I've found that people generally don't pay much attention to what's going on around them. My job as a biology professor is to teach some of the forgotten skills of the naturalist, including the practice of observation.

Today I took my Ecology students birdwatching. We looked at other things, of course, but birds were the primary focus of today's observations. We started the day near the mouth of Elkhorn Slough in Moss Landing, where we were immediately challenged to identify some shorebirds. Fortunately we had a guest lecture from a seabird biologist yesterday, and she gave us some important clues to help us with our field IDs.

Some shorebirds are fairly easy to identify, such as this long-billed curlew (Numenius americanus). It was foraging in a stand of pickleweed just off the road, which is the only reason I was able to take a decent photo of it.

Long-billed curlew (Numenius americanus) at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Long-billed curlew (Numenius americanus) at Elkhorn Slough.
18 March 2016
© Allison J. Gong

We also saw marbled godwits (Limosa fedoa), willets (Tringa semipalmata), as well as the flocking "peeps," which we never got a really good look at but all agreed might have been sanderlings (Calidris alba).

One of the things we had been warned about was the difficulty of identifying gulls. There are some features that help when the birds are in adult breeding plumage, but gulls go through several juvenile plumages before attaining their adult colors and there's a lot of phenotypic overlap among species. Case in point:

Gulls (Larus spp.) on Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Gulls (Larus spp.) on Moss Landing State Beach.
18 March 2016
© Allison J. Gong

Some of these adults are western gulls (Larus occidentalis) but some look different (smaller bodies, different beak coloration). They might be sub-adult westerns or another species entirely. And even the birds in juvenile plumage varied a lot; some were speckled or mottled while others were more uniformly colored. Several birds (not in this photo) had pale gray backs and pale tan flanks. According to my field guide, National Geographic's Field Guide to the Birds of North America, there are several species that have this plumage in their second or third winter. We kind of gave up on the gulls, but to be honest we didn't have a lot invested in identifying them.

The highlight of the beach part of the field trip, at least for me, was seeing snowy plovers (Charadrius nivosus). These tiny birds are perfectly colored to hide in the sand, and unless they move they are almost impossible to see. I found them because we unwittingly wandered too far up the beach towards the dunes and accidentally flushed them from their divots in the sand.

Snowy plovers (Charadrius nivosus) at Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Snowy plovers (Charadrius nivosus) at Moss Landing State Beach.
18 March 2016
© Allison J. Gong

Can you spot all four plovers in this photo? Here's another quartet:

Snowy plovers (Charadrius nivosus) at Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Snowy plovers (Charadrius nivosus) at Moss Landing State Beach.
18 March 2016
© Allison J. Gong

This morning I saw my first humpback whale of the season. A couple of whale watching boats were lingering around the mouth of the harbor, which should have clued us in that there was something going on. However, it took a kayaker to tell us that there were breaching humpbacks just off the jetty before we realized. And I call myself a naturalist? Sheesh.

This bird is, I think, a third-winter western gull (L. occidentalis).

Western gull (Larus occidentalis) at Elkhorn Slough in Moss Landing, CA. 18 March 2016 © Allison J. Gong
Western gull (Larus occidentalis) at Elkhorn Slough in Moss Landing, CA.
18 March 2016
© Allison J. Gong

This species is endemic to the California Current, which means that it is found nowhere else. The pink legs are characteristic of western gulls, and the black on the tip of the bill indicates a third-winter bird. Adults have a red spot towards the end of the bill but not on the very tip. If you look closely you can see that this bird has a tiny bit of red immediately proximal to the black smudge.


After lunch we convened at the Elkhorn Slough National Estuarine Research Reserve visitor center, across the highway and inland a bit from our morning site. The students got a 30-minute orientation to the history and geography of the Slough, then we went on a hike.

Orientation to the Elkhorn Slough National Estuarine Research Reserve. 18 March 2016 © Allison J. Gong
Orientation to the Elkhorn Slough National Estuarine Research Reserve.
18 March 2016
© Allison J. Gong

The first leg of the hike was a short walk to what is appropriately called the overlook. This is where I gave the students their only real assignment of the day. They had to spend 10 minutes in silent observation. They could write in their notebooks and look around with binoculars, but they were not allowed to talk at all. With some groups this is a nigh-impossible feat, but these students did a fantastic job. After the 10-minute observation period we discussed what they had seen and heard. One student said he heard 26 bird calls, but didn't know how many of them were the same bird making different calls. Others mentioned the sounds of human activity--traffic on the highway, planes flying overhead, the beep-beep-beep of a truck in reverse--as well as the buzz of insects and birds. I asked if anyone else had noticed the shadow of a turkey vulture that flew directly over us.

Silent observation period at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Silent observation period at Elkhorn Slough.
18 March 2016
© Allison J. Gong

I think this is a very valuable exercise and would like to extend this period of silent observation to 15 or 20 minutes for future classes. In a lot of ways class always feels a little frantic, and to slow down and simply be a part of nature is a luxury of time that many of us don't have. Alas, we had other places to visit on the hike and needed to get moving again.

Turkey vulture (Cathartes aura) in flight over Elkhorn Slough. 18 March 2016 © Allison J. Gong
Turkey vulture (Cathartes aura) in flight over Elkhorn Slough.
18 March 2016
© Allison J. Gong

Much of Elkhorn Slough used to be a dairy, and the Slough is still surrounded by agricultural fields. There are two barns on the Reserve, named Big Barn and Little Barn. Little Barn is used for equipment storage and isn't open to the public, but you can walk into Big Barn. There are two barn owl boxes in Big Barn. We searched under them for owl pellets; we didn't find any intact pellets but did see some that had been dissected by previous human visitors.

Little Barn (foreground) and Big Barn (background) at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Little Barn (foreground) and Big Barn (background) at Elkhorn Slough.
18 March 2016
© Allison J. Gong

I don't think I've ever seen this much green at Elkhorn Slough. All of the El Niño rains have brought forth a lot of wildflowers and grasses. We hiked past a large stand of non-native poison hemlock (Conium maculatum) on our way to Big Barn. That stuff is going to be difficult to eradicate, as it spreads quickly and outcompetes native species. And yes, this plant is highly toxic to mammals and was, in fact, used by the ancient Greeks for human executions (including that of Socrates).

When we returned to the visitor we asked the Reserve's naturalist, Jane, to take our picture. So this is class photo #1 of the semester. It's not complete, as three students were absent today. I hope to get a picture of the entire class another day.

OLYMPUS DIGITAL CAMERA

I wanted to take the students to the woodpeckers' acorn granary, but we didn't have time to hike that far. Spring break is coming up week after next, and I think I'll go back to the Slough to say "hello" to the family of acorn woodpeckers. I'm looking forward to having more time than I do at the moment to play outdoors. I want to do some drawing, too!

One of the best things about teaching is the opportunity to keep learning. Case in point: yesterday I attended an all-day teacher training session for the LiMPETS program, so that I can have my Ecology students participate in a big citizen science project in the rocky intertidal later this spring. In the Monterey Bay region LiMPETS is organized and run out of the Pacific Grove Museum of Natural History, where yesterday's training took place. LiMPETS has two ongoing citizen science projects, one looking at populations of mole crabs (Emerita analoga) on sandy beaches and the other monitoring population of several invertebrate and algal species on rocky shores. Of course, my interests being what they are I signed up for the rocky intertidal monitoring project.

We spent the morning learning about the history of the program and how to identify the organisms that are monitored, then after lunch went out to Point Pinos to collect some data and work through the process that we need to teach to our students. The day before we'd had a high surf advisory on the coast, and yesterday the swell was still big. We hiked out to the study site and set up the transect line, which runs from the top of a rock through the entire range of tidal heights to the low intertidal.

LiMPETS study site at Point Pinos. 6 February 2016 © Allison J. Gong
LiMPETS study site at Point Pinos.
6 February 2016
© Allison J. Gong

One of our instructors, the intrepid Emily, sets the transect line. 6 February 2016 © Allison J. Gong
One of our instructors, the intrepid Emily, sets the transect line.
6 February 2016
© Allison J. Gong

Where Emily is standing is about 10 meters along the transect line. The monitoring protocol calls for sampling at every meter on the transect. One of the other teachers, Phaedra, and I were the only ones wearing hip boots, so we volunteered to work at the lowest spot. We thought we'd start with the 10-meter quadrat and hopefully get down to the 11-meter quadrat once the tide receded a bit more. Then we got hit by a few big waves and decided that discretion is the better part of valor and gave up. It was a pretty easy decision to make, especially after the quadrat got washed away and we had to go fetch it when the waves brought it back.

Field gear. 6 February 2016 © Allison J. Gong
Field gear.
6 February 2016
© Allison J. Gong

All told the group collected eight quadrats of data. We had a little time to poke around (i.e., take pictures) before heading back to the museum for data entry.

A gorgeous chiton! 6 February 2016 © Allison J. Gong
A gorgeous chiton! I don't know which species it is.
6 February 2016
© Allison J. Gong

Codium fragile, a filamentous green alga. 6 February 2016 © Allison J. Gong
Codium fragile, a filamentous green alga.
6 February 2016
© Allison J. Gong

Codium is an interesting alga. These cylindrical structures are composed of many filaments, which in turn contain multi-nucleate cells. Yes, the cells contain multiple nuclei. Codium fragile has the common name "dead man's fingers," I suppose because. . . well, I actually have no idea. As far as I can tell they don't feel anything like a dead man's fingers, or the way I imagine a dead man's fingers would feel.

There were quite a few empty abalone shells scattered among the rocks. As we were hiking out I found this shell. When I tried to pick it up I found that it was still alive, and well stuck to the rock. This is a very good sign, as the black abs have been suffering from withering syndrome, in which the animal gradually loses its ability to hang on.

Haliotis cracherodii, the black abalone, wearing a few barnacle friends. 6 February 2016 © Allison J. Gong
Haliotis cracherodii, the black abalone, wearing a few barnacle friends.
6 February 2016
© Allison J. Gong

All in all, this workshop was a lot of fun. If I have to give up an entire Saturday to do training, it couldn't get much better than spending at least part of it in the intertidal. And Point Pinos is such a fabulous intertidal site that I certainly wouldn't turn down an opportunity to explore there again.

%d bloggers like this: