Skip to content

1

The first field trip of the semester for my Ecology class is always a jaunt up the coast to Rancho del Oso and Waddell Beach. It's a great place to start the practice of observing nature, because we can explore the forest in the morning, have lunch, and then wander along the beach in the afternoon. We really are lucky to have such a wide variety of habitats to study around here, which makes taking students out into the field really fun. My passion and expertise will always belong with the marine invertebrates, but it's good for me to work outside my comfort zone and immerse myself in habitats I don't already know very well. During this year's class trip to Waddell Beach I was struck by some things I had seen before but never paid much heed to. And also one very big thing that caught everybody's attention.

Depending on how much rain has fallen recently, Waddell Creek may or may not flow all the way into the ocean. Since California has a short rainy season, there are months when the creek is completely cut off from the ocean, due to both a lack of flow and the accumulation of sand on the beach. So far this rainy season, which began on 1 October 2019, we've gotten about 93% of our normal rain. However, we had a very wet December, and almost no rain since then. I wasn't sure whether or not Waddell would be flowing into the ocean. It was.

Waddell Creek where it flows across the beach into the Pacific Ocean
Waddell Creek flowing into the Pacific Ocean
2020-01-31
© Allison J. Gong

The really big thing that we all stopped to look at was this guy lounging in the creek.

Subadult male elephant seal (Mirounga angustirostris) lying in the creek at Waddell Beach.
Northern elephant seal (Mirounga angustirostris) on Waddell Beach
2020-01-31
© Allison J. Gong

The students had many questions: What was he doing there? Was he sick? Was it a male? Was he dead? Well, no, he wasn't dead. And while I guessed from this view that it was a subadult male, I was secretly relieved to be proved right when we walked down the creek (keeping the mandated distance away from him) and looked back to see his big schnozz.

The elephant seal breeding season is coming to an end, but animals will continue to haul out and rest on the beach. This subadult male clearly isn't going to be dethroning any beachmasters this year, so he has taken the safe route and chosen a beach away from the breeding ground at Año Nuevo, which is ~2 miles up the coast. What I really liked about this particular animal was that we could see the tracks he made getting himself up the beach to the creek.

So that was the big thing. Eye-catching he certainly was, but to my mind not nearly as interesting as the small things we paid more attention to on the beach. It is tempting to think of sandy beaches as relatively lifeless places, compared to something like a rocky intertidal or a redwood forest. But for some reason, this trip I became intrigued by the dune vegetation. At first glance a sand dune seems to be a very inhospitable place for plants, and it is. Sand is unstable and moves around all the time, making it difficult for roots to hang on. Sand also doesn't hold water, so dune vegetation must be able to withstand very dry conditions. It's not surprising that dune plants have some of the same adaptations as desert plants.

Let's start with the natives.

Photograph of yellow sand verbena (Abronia latifolia) at Waddell Beach.
Yellow sand verbena (Abronia latifolia)
2020-01-31
© Allison J. Gong

I love this little sand verbena (Abronia latifolia)! It is native to the west coast of North America, from Santa Barbara County to the Canadian border. It is a sand stabilizer, decreasing the erosion that occurs. The sand verbenas also live in deserts; I saw them at Anza-Borrego and Joshua Tree last year. The beach sand verbena grows low to the ground, probably as a way to shelter from the winds that come screaming down the coast. Cute little plant, isn't it?

The other yellow beach plant we saw was the beach suncup (Camissoniopsis cheiranthifolia), a member of the primrose family.

Photograph of the beach suncup (Camissoniopsis cheiranthifolia) at Waddell Beach.
Beach suncup (Camissoniopsis cheiranthifolia)
2020-01-31
© Allison J. Gong

Like the yellow sand verbena, the beach suncup is a California native. It grows along the entire coast, including the Channel Islands. Also like the yellow sand verbena, the suncup grows low to the ground. Its leaves are thick and a little waxy, to help the plant resist desiccation.

And now for the non-natives. I must admit, I had given very little thought to the plant life on my local beaches. I'd seen and studied beach wrack, but to be honest most of my attention is usually directed towards the water instead of up high on the beach where the plants live. This day I decided to photograph the plants.

This plant is a little succulent called European sea rocket (Cakile maritma). As the common name implies, its native habitat is dunes in Europe, northern Africa, and western Asia.

Photograph of the succulent plant, European sea rocket (Cakile maritima) at Waddell Beach.
European sea rocket (Cakile maritima) at Waddell Beach
2020-01-31
© Allison J. Gong

Cakile maritima has several life history traits that enable it to be carried around the world. It produces a lot of seeds, more so than the native dune plants. The seeds are dispersed by water and can be transported long distances in the ballast water of ships, which is probably how it got to California in the first place. It tolerates disturbances better than native dune vegetation, which allows it to be a superior competitor. Cakile maritima is considered to be invasive, meaning that it can survive and spread on its own in a non-native habitat, but its effects seem to be restricted to beach dunes. Despite its ability to thrive and outcompete our native beach plants, it appears to be unable to expand away from the sand.

Mushrrom, Psathyrella ammophila, growing out of the sand at Waddell Beach.
Psathyrella ammophila at Waddell Beach
2020-01-31
© Allison J. Gong

Our surprise of the day was a beach mushroom! None of us had seen them before. This is Psathyrella ammophila, the beach brittlestem mushroom. Like sea rocket, it is also a European invasive. We were perplexed by this mushroom. Most of a fungus's body (mycelium) is underground. The mycelium spreads through soils as very thin threads called hyphae. Every once in a while the mycelium sends up a fruiting body, which is what we call a mushroom. There is no way to know, from the location of mushrooms, where and how far the mycelium spreads underground.

The presence of a mushroom on the beach means that a fungal mycelium is feeding on something in the sand. There isn't much plant matter buried on beaches, but we hypothesized that perhaps one of the logs from the forest had washed down the creek and been deposited on the beach. It would then be buried in sand, along with all the mycelium it carried, and a mushroom could have sprouted up through the sand.

Well, it was a good hypothesis.

I posted my photo to a mushroom ID page, and it was identified as Psathyrella ammophila. My submission to iNaturalist came back with the same result. A little research led me to another non-native invasive species, Ammophila arenaria, the European marram grass. Notice that the species epithet of the mushroom is the same as the genus name of the plant? That was my first clue. Marram grass is one of the most noxious weed species on the California coast. It was intentionally introduced to the beaches in the mid-1800s, to provide stability to the dunes. It is very good at that, but also spreads very rapidly, usually growing upwards away from the ocean. That said, marram grass also breaks off chunks that can survive in the ocean and float off to colonize new beaches.

The fungus Psathyrella ammophila grows as a saprobe on the decaying roots of Ammophila arenaria. No doubt the fungus was introduced along with the marram grass as an inadvertent hitchhiker. Since there is so much marram grass on our beaches, it's safe to assume that there is a lot of Psathyrella, too. That means it's time to start looking for mushrooms on the beach!

Joshua Tree National Park gained a certain notoriety this past winter, when idiots went there during the federal government shutdown and trashed the place. The vandals chopped down the iconic Joshua trees (Yucca brevifolia), let their dogs run around unleashed, left litter scattered over the landscape, and carved new roads through the desert. I'd like to give most people the benefit of the doubt and assume that they didn't realize the damage they were doing to the park. However, it takes only a few bad apples to destroy a public resource for everybody, as we've all experienced at some point.

© DesertUSA

The very first thing I learned about Joshua Tree is that it has two distinct desert habitats. Hey, I'm a marine biologist, and the desert--any desert--is new territory for me. None of this landscape has been anywhere near the ocean for millions of years! Anyway, the eastern half of the park is Colorado Desert, which is similar to what we had seen at Anza-Borrego State Park. Many of the plants in this region were also familiar to us because we had seen them in Anza-Borrego, but for the most part were more abundant here in Joshua Tree.

For example, we saw many more bluebells (Phacelia campanularia) at Joshua Tree than in Anza-Borrego. The P. campanularia at Joshua Tree also looked healthier (more robust and vigorous, less spindly) than they did in Anza-Borrego. Perhaps the higher elevation of the Colorado Desert in Joshua Tree (approximately 914 meters, or 3000 feet) compared to Anza-Borrego (182 meters, or 597 feet) accounts for this observation.

Desert bluebells (Phacelia campanularia) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

I really liked the Colorado Desert in Joshua Tree. Even though it was the same ecosystem as what we saw in Anza-Borrego, here the flowers seemed more colorful and striking. The yellows were a little brighter, and the pinks and blues a little deeper. The scenery was breathtaking everywhere I looked. I wish my photos could do justice to the beauty of the landscape.

Wildflowers at Joshua Tree National Park
2019-03-27
© Allison J. Gong

Aside from the desert bluebells, other flowers that we had seen at Anza-Borrego included the brittlebush (Encelia farinosa), which seems to be ubiquitous in the Colorado Desert. The Arizona lupine (Lupinus arizonicus) was also common in Joshua Tree; like the bluebells, these appeared to be more robust here than in Anza-Borrego.

There were new flowers, too. My favorite, which I didn't see a lot of, was this desert globemallow, Sphaeralcea ambigua:

Desert globemallow (Sphaeralcea ambigua) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

Here's a close-up of the same plant. Look at that gorgeous orange color!

Desert mallow (Sphaeralcea ambigua) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

Against the prevailing palette of yellows and purples, this orange really stood out and caught the eye. This plant is also called the apricot mallow, for obvious reasons.

Some other flowers that we saw:

Among all the colorful flowers in the overall landscape, there was this very subtle plant, easily overlooked by eyes accustomed to more brilliant blossoms.

Sand blazing star (Mentzelia involucrata) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

Something that tickled my funny bone was the little chia plant, Salvia columbariae. It looks like a prickly purple pom-pom. Two days in the desert had taught me not to touch things if I didn't know what they were, but I had to know if these blossoms were as pokey as they looked. They weren't!

Chia (Salvia columbariae) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

There are parasitic plants in the desert, too. The red branches in this bush are the desert mistletoe (Phoradendron californicum), a hemiparasite. It drains water and nutrients from its host plant but performs its own photosynthesis.

Desert mistletoe (Phoradendron californicum) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

In Joshua Tree National Park there's an area called the Cholla Cactus Garden. Chollas are cactuses with cylindrical stems, rather than the flat stems of the beavertail or prickly pear cactuses. The most common one in the Colorado Desert (that we saw, at least) was the teddybear cholla, Cylindropuntia bigelovii. As the name implies, it's a cute, fluffy cactus, but it's definitely still a cactus.

Teddybear chollas (Cylindropuntia bigelovii) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

Teddybear chollas (Cylindropuntia bigelovii) at Joshua Tree National Park
2019-03-27
© Allison J. Gong

The teddybear cactus blooms in May and June, so we didn't see any flowers. In addition to having the normal plant sex using flowers, these cactuses also reproduce clonally by dropping branches. The dropped pieces roll around and find a new place to attach and grow. Interestingly, this type of clonal replication, called budding, is common in many marine invertebrates!

Buds of teddybear cholla (Cylindropuntia bigelovii)
2019-03-27
© Allison J. Gong

Here's a newly detached bud from a teddybear cholla:

Bud of teddybear cholla (Cylindropuntia bigelovii)
2019-03-27
© Allison J. Gong

And here's a recently established, young plant:

Young teddybear cholla (Cylindropuntia bigelovii)
2019-03-27
© Allison J. Gong

Cute little cactus, isn't it?

The trees that give Joshua Tree National Park its name live in the higher and cooler western region of the park, known as the Mojave Desert. The Joshua trees (Yucca brevifolia) live singly or in clusters. In some ways, Y. brevifolia is the symbol of the Mojave Desert. They are also abundant in the higher elevations of the Tehachapi Mountains along Highway 58 between Bakersfield and the town of Mojave.

Joshua trees (Yucca brevifolia) in the Tehachapi Mountains
2017-03-24
© Allison J. Gong

In Joshua Tree National Park, said trees were blooming in late March.

Blooming Joshua tree (Yucca brevifolia) in Joshua Tree National Park
2019-03-27
© Allison J. Gong

I'll have more to say about reproduction in Joshua trees and some other desert plants in another post. This one is getting long, and we had more desert adventures to come.

Next stop: Death Valley

The first new-to-me visit on our spring break road trip was Anza-Borrego State Park in the southern California desert. We arrived late in the day on Monday and had just a brief chance to look around. On Tuesday we got up early and went for a hike, trying to avoid some of the midday heat. Fortunately there was a bit of a breeze, which helped with the heat but made flower picture-taking challenging.

Anza-Borrego is located in the Colorado Desert, which is a western subdivision of the Sonoran Desert. The Colorado is a low-altitude desert (most of the surrounding hills are only ~900 meters tall) and thus gets much hotter in the summer than deserts at higher elevations, and very rarely experiences a winter frost. Winter is the main rainy season and some regions also receive rain during a late-summer monsoon season.

After a rainy winter, the desert explodes into vibrant life:

Anza-Borrego State Park
2019-03-26
© Allison J. Gong

The color of the day at Anza-Borrego was yellow. More details on the yellow players in a bit.

Anza-Borrego State Park
2019-03-26
© Allison J. Gong

It had rained a few days prior to our visit, and there a stream was flowing through the desert.

Anza-Borrego State Park
2019-03-26
© Allison J. Gong

This running water would be a temporary situation, of course, but one that is of great help to the wildlife in the park. At the park visitor center I read that wildlife large and small come to drink from the shallow streams, and that if we were to see bighorn sheep approaching the water we should stay out of their way. Water is so scarce for these animals that any delay in getting to it, or any separation of individuals from their family unit could be very stressful. I didn't know whether or not we'd even see the sheep, since they are shy, but we got lucky!

Desert bighorn sheep (Ovis canadensis) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

Handsome fellow, isn't he? He was eating and didn't seem to mind us hikers as long as we stayed on the trail. Of course, there was an idiot who approached too close to get a better photo, and this ram wasn't happy about it. He withdrew away from us and then went about his business. Other sheep wandered through, too, to forage or drink from the stream. But this big guy gave me the best photo op.

A visit to the desert this spring, after all the rain we had over the winter, was all about the wildflowers. Most of them were new to me. One thing that struck me was that, instead of the carpets of color that we'd seen at Carrizo Plain or Antelope Valley, flowers at Anzo-Borrega were much more widely dispersed. Some species were very common and others I didn't see more than once or twice.

As I mentioned above, yellow was the predominant color at Anza-Borrego. There were several daisy-like flowers in both yellow and white, and some were very common. Fortunately for me, the visitor center had an easy-to-use pictorial guide of the most common wildflowers; using that, some wildflower field guides that we brought with us, and Calflora.org, I may have identified them all correctly. I'm sure that somebody will point out any identifications that I got wrong.

Brittlebush (Encelia farinosa)
2019-03-26
© Allison J. Gong

One of the defining characteristics of E. farinosa is the way that the blossoms are raised up above the grayish-green foliage. It's a cool morphology, and makes the plant look very different when you see it from the side. Here's a shot that shows it:

Brittlebush (Encelia farinosa)
2019-03-26
© Allison J. Gong

And brittlebush was very abundant!

Lots of brittlebush (Encelia farinosa) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

Another very abundant yellow flower was the very aptly named desert dandelion, Malacothrix glabrata. It looks like a typical dandelion, perhaps a more pale buttery color than usual, and when mature the blossoms have a small purplish red spot in the center.

Desert dandelion (Malacothrix glabrata) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong
Desert dandelion (Malacothrix glabrata) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

Our state flower, Eschscholzia californica, is typically a brilliant pure orange color, although sometimes the color can be more yellow. In Anza-Borrego I saw some plants whose foliage looked poppy-ish, but the blossoms didn't look quite right--a little too small to be California poppies and a color that was definitely yellow rather than orange. Turns out, though, that they were gold poppies (E. parishii)!

Gold poppies (Eschscholzia parishii) and one of the purple Phacelia species at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

And who can resist a plant called ghostflower? That palest of yellows, almost but not quite white, combined with the tiny dark speckles, makes the plant seem very quiet--indeed, almost spooky. Ghostflower is easily overlooked, compared to the vibrant yellows of brittlebush, poppies, and dandelions.

Desert ghostflower (Mohavea confertiflora) and gold poppy (Eschscholzia parishii) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

One of my favorite flower color combinations is yellow, white, and purple. Imagine how pleased I was to find it in the desert!

Desert dandelion (Malacothrix glabrata), desert chicory (Rafinesquia neomexicana) and a purple phacelia (Phacelia distans) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

The color purple was represented by two species of Phacelia, P. distans and P. campanularia. Phacelia distans was by far the most common in the floors of the valleys, and we saw P. campanularia at higher elevations.

This is Phacelia distans. Note the shape of the inflorescences, and how the blossoms are arranged.

Phacelia distans at Anza-Borrego State Park
2019-02-36
© Allison J. Gong
Phacelia distans at Anza-Borrego State Park
2019-02-36
© Allison J. Gong

And this is Phacelia campanularia, the desert bluebell:

Desert bluebell (Phacelia campanularia) at Anza-Borrego State Park
2019-02-36
© Allison J. Gong

These plants have the same blossom shape, but very different blossom arrangements and foliage morphology. Nifty, the differences between presumably closely related species, eh?

Another flower in the purple family was the desert sand verbena (Abronia villosa). It occurred in sandy soils, often in washes or dunes, similar to the sand verbena that I see on beaches along the coast.

Desert sand verbena (Abronia villosa) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

The pink color family was represented by the bright pink Bigelow's monkeyflower, Diplacus bigelovii. They were fun. The golden-orange throat is the diagnostic feature for this species.

Bigelow's monkeyflower (Diplacus bigelovii) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong
Bigelow's monkeyflower (Diplacus bigelovii) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

I didn't get very many good pictures of the white flowers. It always seemed to be especially windy when we saw them. Desert chicory (Rafinesquia neomexicana) is a white daisy-like flower.

Desert chicory (Rafinesquia neomexicana) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

This being the desert, much of the plant biomass was succulent in nature. The ocotillo were blooming, as were the teddybear cholla and other cactuses.

Ocotillo (Fouquieria splendens) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

Everything living in the desert survives only if it can take advantage of the minimal precipitation that falls every year. Cactuses must suck up as much water as they can during the wet season, and store it for use during the hot, dry summer. Barrel cactus (Ferocactus acanthodes) this spring are fat, like the barrels for which they are named, and full of water. Their bodies are pleated longitudinally, allowing them to swell up when water is available. Then, as their water stores are depleted during the summer, the pleats fold together and the body becomes more compact. The large saguaro cactuses in the Sonoran Desert do the same thing.

Blooming barrel cactus (Ferocactus acanthodes) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

A cactus whose blossom definitely belongs in the pink category is the beavertail cactus (Opuntia basilaria). I think it was early in the blooming season for them, as I never saw any plants with more than a few open flowers, but most of them had many buds developing.

Beavertail cactus (Opuntia basilaria) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

The chollas are cactuses in the genus Cylindropuntia, characterized by cylindrical stems. The teddybear cholla (C. bigelovii) was the one we saw at Anza-Borrego. It has dense spines that give it a fuzzy look but in reality form an impenetrable defense--it manages to say "I'm cute and fuzzy!" and "Don't touch me!" at the same time.

Teddybear cholla (Cylindropuntia bigelovii) at Anza-Borrego State Park
2019-03-26
© Allison J. Gong

The teddybear chollas were very abundant at Anza-Borrego. We continued to see them as we continued on our trip. Next stop, Joshua Tree!

1

We've had a good strong wet season this year, resulting in another wildflower superbloom. Over spring break we went to southern California to chase the flowers and, while we were at it, visit some places that I'd never been to. Our first stops were at familiar stomping grounds that we'd visited in 2017: Shell Creek Road, Carrizo Plain, and Antelope Valley. There were significantly more people at all of these places, compared to two years ago. Many of the well known sites for wildflowers have become very popular lately, and we tried to avoid the most crowded areas.

Location 1: Shell Creek Road

Just because I love the California oaks, here's one that is well festooned with lace lichen (Ramalina menziesii) and moss:

Coastal live oak (Quercus agrifolia)
2019-03-24
© Allison J. Gong

The sky was hazy that day, making for less than ideal picture-taking conditions. The wind certainly didn't help, as the flowers were moving constantly. This early in the bloom the predominant color was yellow: a soft, buttery yellow due to the tidy tips and a much more brilliant, retina-searing gold due to the goldfields.

Goldfields (Lasthenia californica)
2019-03-24
© Allison J. Gong

There was some relief from all the yellow, in patches of baby blue eyes.

Wildflowers along Shell Creek Road
2019-03-24
© Allison J. Gong
Baby blue eyes (Nemophila menziesii)
2019-03-24
© Allison J. Gong

Location 2: Carrizo Plain and Temblor Hills

Soda Lake Road, which runs through Carrizo Plain, was quite crowded. We stopped at the vista point and then headed off the beaten track onto some less-traveled dirt roads.

Still hazy, see?

Soda Lake, from vista point
2019-03-24
© Allison J. Gong

There was such glorious scenery all around!

2019-03-24
© Allison J. Gong
2019-03-24
© Allison J. Gong

To the northeast of Carrizo Plain lie the Temblor Range hills, on which the bloom was just beginning. We saw fiddlenecks and goldfields at lower elevations, and splotches of purple Phacelia and orange poppies higher on the hills.

Fiddlenecks (Amsinckia menziesii), goldfields (Lasthenia californica), and Phacelia ciliata
2019-03-24
© Allison J. Gong

Poppies weren't going very strongly yet, but were distinguishable as a faint orange wash on the hills:

Wildflowers on Temblor Hills
2019-03-24
© Allison J. Gong

We'd see plenty of poppies the next day!

Location 3: Antelope Valley

Antelope Valley was overrun with people, climbing up hillsides with their dogs and selfie sticks. Seems that selfies of people sitting in poppy fields is all the rage these days. We didn't bother even trying to get into the poppy preserve, as there were lots of flowers to be seen in the surrounding areas.

Owl's clover (Castilleja exserta) and California poppy (Eschscholzia californica)
2019-03-25
© Allison J. Gong
California poppies (Eschscholzia californica)
2019-03-25
© Allison J. Gong

Compared to what we saw at Antelope Valley in 2017, this year's bloom was different. This year the poppies were not as widely scattered as in 2017, but where they occurred they were extremely dense. Then again, this year we were early in the bloom, and by now it could be different.

Poppy field at Antelope Valley
2019-03-25
© Allison J. Gong

Next up: Anza-Borrego!

Coastal live oak (Quercus agrifolia) at Fort Ord National Monument
2019-03-08
© Allison J. Gong

The other day my students and I lucked out with the weather and managed to get in a full day of exploring a former military base. Fort Ord, on Monterey Bay near the small city of Marina, was an Army base until it was closed in 1994. Since then, most of the land (~14,600 acres) has been designated the Fort Ord National Monument, administered by the federal Bureau of Land Management. Smaller portions were transferred to the surrounding cities, the campus of CSU Monterey Bay, the state park system, and the University of California's Natural Reserve system. Our guide for the day, Joe, is the reserve manager for the Fort Ord Natural Reserve, and had arranged for us to meet with researchers working at both sites that we visited. It really was a fantastic learning opportunity for all of us.

The Fort Ord National Monument (FONM) came into being in 2012--thank you, President Obama! Most of the monument is public land, with miles of trails used to hikers, bicyclists, and horseback riders. The monument is also home to the California tiger salamander (Ambystoma californiense), the central California population of which is federally threatened. The first person we met on our field trip was a guy named Robert, who is a graduate researcher working on conservation of the tiger salamanders. Robert showed us some artificial vernal pools that he's using in his research.

Artificial vernal pools at Fort Ord National Monument
2019-03-08
© Allison J. Gong

The 18 pools are about 10 meters in diameter, lined with an impermeable layer, and were allowed to fill with natural rainwater. Robert's plan is to seed them with salamander larvae and record how they survive and disperse from the pools. There's a lot more to the story than that, but it's Robert's story to tell, not mine.

We did get to help Robert check the pitfall traps, which are arranged in pairs on each side of the fence surrounding each pool. Each trap is a small bucket set into the ground to be level with the surface. The lid is mounted on wooden legs and sits above the trap, to keep it from filling with water. Animals crawling along the fence will fall into the bucket. Robert collects data on the animals trapped and then releases them unharmed.

The tiger salamanders are all underground at this time of year so there were none in the traps. The students did, however, find a pair of western toads (Anaxyrus boreas) in one of the traps. They were in amplexus, which is what herpetologists call the mating position of frogs and toads: the male clasps the female around her body, ideally positioned to fertilize the female's eggs as she lays them.

Western toads (Anaxyrus boreas) at Fort Ord National Monument
2019-03-08
© Allison J. Gong

The pair of amorous toads were released into one of the ponds, where they swam off together, still in amplexus. Their offspring will be born into the pond as tadpoles, along with those of the chorus frogs, the red-legged frogs, and hopefully not too many bullfrogs. Incidentally, herpetologists use the term 'tadpole' to refer only to the larvae of frogs and toads; Robert calls the larvae of his study salamanders just 'larvae'.

We ventured over to the Fort Ord Natural Reserve (FONR), where we ate our lunch in a clearing surrounded by coast live oaks and coastal scrub. FONR is one of five natural reserves managed by UC Santa Cruz as an outdoor classroom and teaching lab. School groups ranging from elementary school to university levels visit FONR to learn about the natural environment, often for the very first time.

FONR sits on an ancient sand dune, and all of the vegetation has had to adapt to difficult growing conditions. The soil is almost entirely sand and doesn't hold water at all. The wind picks up just about every afternoon and blows in salt from the ocean; these winds can be quite fierce even without the salt. The sand itself gets blown around, making an unstable substrate. As a result, plants that would otherwise grow tall are stunted here. Take, for example, the coast live oak (Quercus agrifolia). In places that are more sheltered from the wind, they are tall and majestic, even as they continue their meandering growth form. At FONR they are much shorter and more closely resemble the other scrub plants than actual trees.

Coast live oak (Quercus agrifolia) and coastal scrub at Fort Ord Natural Reserve
2019-03-08
© Allison J. Gon
Horned lizard (Phyronosoma sp.) at FONR 2018-05-12
© Allison J. Gong

After lunch we heard from Dani, a UCSC undergraduate student studying horned lizards (Phrynosoma sp.). The lizards are very well adapted to this environment. They live in sand, and have flattened bodies so they can hide on top of the sand and become practically invisible. Like the tiger salamanders the horned lizards are underground now. They should emerge in the next couple of months. This is one that we saw last May, when Joe invited last year's class to visit the Reserve on a Saturday, after our planned field trip was cancelled due to rain.

Footsteps of spring
Sanicula arctopoides
2019-03-08
© Allison J. Gong

In early March the plants were starting to bloom. One of the earliest bloomers is this delightful plant called 'footsteps of spring'; its real name is Sanicula arctopoides. They look like small blotches of yellow spray paint against the ground. And when you see several of them scattered on the trail, you really understand their common name.

Students follow the footsteps of spring (Sanicula arctopoides)
2019-03-08
© Allison J. Gong

There were, of course, no horned lizards to be seen. We did, however, hike the reserve, and Joe showed us some of the endemic and/or endangered plants that live there. That's Joe, in the front of the group here:

Joe and students
Fort Ord Natural Reserve
2019-03-08

Our last stop at the end of the field trip was at a location where the Army used to work on fire suppression. They did this by dumping various flammable items and fuels on the ground, lighting them on fire, and putting them out. This activity resulted in groundwater and soil contamination, which Army contractors have been working to clean up for 20 years now. Currently the site is where Robert is raising his tiger salamander larvae in raised ponds; he will eventually release the larvae into the artificial pools that we saw earlier in the day.

Ponds for growing salamander larvae
2019-03-08
© Allison J. Gong

Each of those ponds is filled with natural rain water and contains a small screened tub into which Robert placed 10 salamander eggs. The larvae, after they hatch and have used up all of their yolk reserves, feed on whatever zooplankton have sprung up in the ponds--a quick glance showed that copepods, ostracods, and insect larvae had already taken up residence. The idea is that the salamander larvae will escape from their tubs into the pool at large, which will give them lots of room to grow up.

In a very real sense, this field trip ended where it started. Things don't always work out this nicely, and my Type A personality is pleased at both the symmetry and the closure. Because these field trips are necessarily snapshots of what is happening at a particular moment in a particular place, it can sometimes be difficult to connect them to the real world. This week, though, I feel that my students got the whole story, or at least the entire outline of it. This visit to FONM and FONR may very well be my favorite field trip of the class, because I learned so much about things that are new to me. Thank you, Joe, for arranging such an amazing day for us!

This weekend a subset of my students and I spent a day at the Fort Ord Natural Reserve (FONR) to participate in the 2018 spring Bioblitz. We were supposed to visit FONR for a class field trip in early March to do some vegetation studies, but that trip was rained out. Today's visit was sort of a make-up for that missed lab; because it's a Saturday I couldn't compel the students to attend, but I offered a little extra-credit for those who did. It just so happened that Joe Miller, the field manager at FONR, had organized a Bioblitz for another group of students, and he welcomed my Ecology class as well.

Map of communities surrounding Monterey Bay
© Google Maps

Located adjacent to the city of Marina in Monterey County, FONR is one of five natural reserves administered by the campus of UC Santa Cruz. The other four are the Campus Reserve (on the main campus of UCSC), Younger Lagoon Reserve (on UCSC's Coastal Science Campus), Año Nuevo Natural Reserve (up the coast in San Mateo County), and Landels-Hill Big Creek Reserve (along the Big Sur coast). FONR occupies some 600 acres of a former military base that was closed in 1994. The reserve opened in 1996. As with all the other UC natural reserves, FONR exists to provide students, teachers, and researchers with natural lands to be used as outdoor classrooms and laboratories. Field courses at UC Santa Cruz and CSU Monterey Bay make extensive use of FONR, and students carry out independent studies and internships there.

After all of the participants arrived at the Reserve, Joe described the activities he had planned for the day. He told us that we could wander around the Reserve on our own if we wanted, but there were several hikes we could choose to join:

  • One to where some people were finishing up the day's bird banding activities
  • One to collect samples of environmental DNA
  • One to ID various tracks in the sand
  • One to the different habitats and vegetation types
  • One to check out some pitfall traps for small rodents and reptiles

Because my knowledge of the local flora is sorely lacking, I went on the plant hike with Joe. Many of the spring wildflowers had either finished or were finishing up their yearly bloom. The poison oak (Toxicodendron diversilobum) is looking amazing this year; I think it has been able to take advantage of two consecutive wet seasons with a decent amount of rain. There were many poison oak plantlets scattered around all over the place, and the established bushes are lush and green. There is no way I didn't come into contact with the stuff at least once on this hike, so today is going to be the true test of whether or not I am allergic to it.

One of many poison oak (Toxicodendron diversilobum) plants at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

Much of the terrain at FONR is a maritime chaparral. The soil is extremely sandy (Pleistocene sand dunes, Joe says) with a poor nutrient load and water content. It's not a desert, because we do get a fair amount of precipitation along the Monterey Bay, but the plants have adapted to thrive with low soil moisture levels. It's also often very windy, and there are no trees. Even the coast live oaks (Quercus agrifolia), which can be magnificently massive and meandering, are stunted here. Much of the foliage is low-growing perennial shrubs or annual plants.

Coast live oak (Quercus agrifolia) growing above coyote bush (Baccharis pilularis) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

Joe led us through the habitats of the Reserve, mostly on trails but also along narrow-to-nonexistent tracks that we called Poison Oak Lane, Rattlesnake Drive, and Tick Alley. And yes, we did see a rattlesnake! My husband spotted it, right about where he was going to put his foot. It wasn't a big snake, maybe half a meter long, and was sunning itself in a narrow opening between manzanita bushes. I didn't stop to take a picture because there wasn't a good space to do so, and I wanted to let other hikers pass the snake quickly. The snake didn't seem to react to us, but it's always a good idea to leave them alone.

Just beyond where we saw the rattler, Joe had found a pair of southern alligator lizards (Elgaria multicarinata) mating. When Joe picked them up the male had grabbed the female with a bite behind her head; he does this to keep her from running away, and it also shows his strength and suitability as a father for the female's offspring. The lizards didn't like being interrupted in copulo, so to speak, and the male released the female and escaped back to the ground, leaving his lady love behind in Joe's hand. Hopefully they were able to find each other again once they were both let go.

Joe Miller (left) holding a female southern alligator lizard (Elgaria multicarinata) in his left hand
12 May 2018
© Allison J. Gong

To me, the picture above exemplifies what a Bioblitz is all about. We have two people examining a natural phenomenon, and one of them is taking a picture that he will presumably upload to iNaturalist. People learn a lot when they participate in a Bioblitz--they usually see things they've never paid attention to before, and when their observations are ID'd or corroborated by the community of iNat experts, they get to put a name to the thing they saw. True, it's a better learning experience to sit down with a specimen, hand lens, and book to figure out what an organism is, but most people don't have either the inclination or the luxury of time and the necessary books. And while I'd rather have people look at the real thing with their eyes instead of their phones, getting people to go outdoors and pay any attention at all to their surroundings is a minor victory. I find Bioblitzes to be a little unsettling sometimes. My preferred method for observation is to examine fewer things in greater depth; this is what my graduate advisor Todd Newberry referred to as "varsity" observations. I don't think a Bioblitz has any place in varsity studies, because of its very raison d'être--to record as many observations as possible--means to some degree that instead of taking a deep look you have to glance-and-go. Still, it does have its place in natural history, and I value it as a way to get more people involved in science.

I was on the plant hike, so many of the organisms I photographed and uploaded to iNat are new to me. Some are California endemics and all have adapted to survive in the difficult conditions of a maritime chaparral.

Eriastrum sp., a plant with delicate blue-purple flowers, at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

And I did see one of the California native thistles. Invasive thistles are such a problem that the knee-jerk response is to stomp on them or yank them out of the ground. This one, for which I'm still waiting on an ID confirmation, is silvery and sort of looks like cobwebs. Joe said that its blossom is a bright pink.

A California native thistle, possibly Cirsium occidentale, at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

And one of my newish old favorite wildflowers, Castilleja exserta, was there. The purple owl's clover occurs throughout California; in 2017 I saw a lot of it on my wildflower excursion to the southern part of the state. It varies in color from purple to pink to white and thus has multiple common names.

Castilleja exserta, the purple owl's clover, at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

We also saw a lot of the peak rushrose, Helianthemum scoparium. It is a California native species that does well in dry, sandy areas, such as throughout most of Fort Ord.

Peak rushrose (Helianthemum scoparium) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

While I was leaning down to photograph this plant, one of the Reserve volunteers pointed out a much paler version nearby. He told me that most of the time the peak rushrose has brilliant yellow flowers, but there are always a few that have this much more delicate color.

Pale form of peak rushrose (Helianthemum scoparium) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

And speaking of yellow, I discovered another new-to-me organism! What at first glance looked like a blotch of spray paint on a tree trunk turned out to be something much more interesting--a gold dust lichen in the genus Chrysothrix.

Gold dust lichen (Chrysothrix sp.) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

The lichen book1 that I have describes two species of Chrysothrix, both of which can be found in coastal regions of California. The species have some overlap in habitat, with C. granulosa usually living on bark and occasionally on wood or rock, while C. xanthina can regularly be found on bark, wood, and rock. Nor is color by itself an entirely useful characteristic: C. granulosa is described as brilliant yellow, and C. xanthina can be brilliant yellow, yellow-green, or yellow-orange. There are certain tests that would be able to distinguish between the species, but field ID when the lichen is 'brilliant yellow' remains problematic. So while I'd guess that this specimen is Chrysothrix granulosa (based on a combination of color, location, habitat, and good old-fashioned gut feeling) I can't be at all certain.

The discussion of lichens brings us around to the animals. Did you know that fungi are more closely related to animals than they are to plants? Well they are, despite being included in more botany than zoology courses. And of course we did see animals on our plant hike. Hawks and turkey vultures soared overhead, song birds and hummingbirds flitted among the trees and shrubs, alligator lizards mated, and there was that one rattlesnake, which even the people on the herps walk didn't get to see. As we hiked through the various plant communities in the Reserve, Joe occasionally called out "If you see a horned lizard, catch it!" A woman in our group, Yvonne, managed to do so, despite being loaded down with a backpack and a camera. She pounced on it and held it up for us to photograph.

Horned lizard (Phyronosoma sp.) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

Horned lizard (Phrynosoma sp.) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

Cute little thing, isn't it?

The last critter we saw as we were walking back to the gate after lunch was a juvenile gopher snake (Pituophis catenifer). By the time I got there the snake was resting in the road. It was a very pretty snake. I wanted to take it home and release it into my yard, where there are enough gophers to feed an entire family of snakes, but alas, collecting is not allowed at the Reserve. I do wish that a gopher snake would move into my yard, though.

It is now about 24 hours since we got home. We did our tick checks and didn't find anything, thank goodness, then showered and scrubbed. There's no doubt that we were both exposed to poison oak; it is impossible NOT to be, this time of year. This is the real test for whether or not I am allergic to it. I haven't been so far, but there's a first time for everything and I will never say that I will never get it. My husband, who gets poison oak very easily and very badly, says it could take up to two days to be sure. I'm not itchy today. Tomorrow may be a different story, though.

 


1Sharnoff, S. 2014. A Field Guide to California Lichens, Yale University Press

In biology, it is often the exceptions to the rules we teach that are the most interesting organisms. For example, every child knows that the sky is blue and the grass is green. With a few leading questions you can get a child to generalize that all plants are green. We all know this, right? Plants are green because they have chlorophyll, which allows them to perform the magic of photosynthesis. And yes, it really is magic. Harvesting the power of the sun to build complex molecules out of CO2 and H2O? Yeah, photoautotrophs are freakin' amazing.

But what about the plants that aren't green? How do they make a living?

I've already written about dodder, a parasitic plant that is commonly seen growing on pickleweed at Elkhorn Slough. A few weeks ago when I was at Lake Tahoe I encountered another plant that has a parasitic lifestyle: snow plant.

Snow plant (Sarcodes sanguinea) near Carson Pass in the Sierra Nevada
26 July 2017
© Alex Johnson

Snow plant (Sarcodes sanguinea) is a non-photosynthetic plant that has zero chlorophyll and thus zero green color, and is instead a rich blood-red color hinted at by its species epithet. It lives on the forest floor in close proximity to coniferous trees. The blood-red inflorescences shoot up from the ground, apparently out of nothing; the rest of the plant lives underground. If you break an angiosperm into its basic anatomical components you have: leaves, stems, roots, and flowers. Snow plant isn't photosynthetic, so it doesn't need or have leaves. And since stems are essentially support structures to hold leaves up to the light it doesn't have those, either. The roots and vegetative parts (rhizomes?) of snow plant are underground and for most of the year there's no indication that it's there at all, until it sends up an inflorescence in the late spring as the winter snow is melting.

Snow plant (Sarcodes sanguinea) near Carson Pass in the Sierra Nevada
26 July 2017
© Alex Johnson

Since snow plant isn't autotrophic and doesn't fix its own carbon, it has to obtain fixed carbon from elsewhere. Snow plant lives under conifers, but is not a parasite on the trees the way that dodder is a parasite on pickleweed. The relationship is much more complex and involves a third player. And all of the action happens underground.

Enter the third player, a mycorrhizal fungus. This fungus's mycelium spreads through the roots of the conifers with which it has a mutualistic relationship. The tree shares photosynthate (i.e., fixed carbon) to the fungus, which in turn provides minerals to and enhances water uptake for the tree. These mycorrhizal symbioses are very common in Nature, but most often go unnoticed because they occur in the soil.

Snow plant (Sarcodes sanguinea) near Carson Pass in the Sierra Nevada
26 July 2017
© Alex Johnson

Sarcodes sanguinea, the third partner in this unusual plant-plant-fungus ménage à trois, takes advantage of the intimacy between the conifer and the fungus. Instead of parasitizing the tree it targets the fungus, siphoning off part of the fungus's share of photosynthate. I suppose this makes snow plant an indirect parasite of the tree. The tree is doing all the work, as it is the only autotrophic member of the trio. It shares photosynthate with the fungus and gets something vital in return. Snow plant, on the other hand, doesn't contribute anything to either the fungus or the tree. Rather, it takes directly from the fungus and only secondarily from the tree.

It would be interesting to investigate the energetics of this three-way relationship. How do the fungus and tree react to parasitism by snow plant? On which of the mycorrhizal partners does snow plant have the strongest effect? The fungus, because its share of fixed carbon is being drained directly? Or the tree, which suffers because feeding the snow plant via the fungal intermediary means less photosynthate available to support its own metabolic activities? Does the tree have any way to stop the flow of fixed carbon to an area of the fungal mycelium that is being parasitized by the snow plant?

One last note. Many of the snow plants that we saw on the trail out of Carson Pass to Big Meadow had been surrounded by stones. We never saw any signs so aren't sure why, but I think hikers want to keep the snow plants from getting trampled. The species isn't endangered or threatened, although it is restricted to higher altitudes in California's mountain ranges.

Distribution of Sarcodes sanguinea in California

I think the stone rings were put there both to point out and protect the S. sanguinea inflorescences, although it would be hard to miss them. Nothing else is that bloody shade of red, and it really does stand out. Even small plants are very conspicuous.

Small snow plant (Sarcodes sanguinea)
26 July 2016
© Allison J. Gong

What a bizarre plant. It challenges our preconceived notions of what plants are all about. Ain't Nature grand, and weird?

Day 3 (Saturday 25 March 2017): Highway 25

We spent our second night on the coast in Morro Bay and came home via Highway 25. I would have enjoyed a drive up the coast, but given the road closures in Big Sur that wasn't a possibility. Highway 25, however, proved to be a very pretty drive. It was nice to see wildflowers closer to home, too.

Almost all of the hills sported bright yellow patches, some denser than others. At first I thought they were goldfields, but as we got closer I could see that the color was too bright and lemony to be goldfields, and the plants proved to be wild mustard (Sinapis arvensis). Mustard is widely considered a weed in California. Its native habitat is the Mediterranean basin, and one hypothesis is that it arrived in California with the Franciscan friars who established missions up and down the state. Mustard is one of the first plants to bloom every spring, and it covers hillsides, agriculture fields, and the side of the road.

Scenery along Highway 25
25 March 2017
© Allison J. Gong

Scenery along Highway 25
25 March 2017
© Allison J. Gong

Highway 25
25 March 2017
© Allison J. Gong

For the first time in several years the oak trees appear to be flourishing this spring. There was a lot of rain this past rainy season, and it's such a relief to see the trees coming back to life. I'd forgotten what it is like to see so much green in a California landscape. I mean, just look!

Oak trees along Highway 25
25 March 2017
© Allison J. Gong

Unfortunately for us, most of the land through which Highway 25 winds is private owned, which means we couldn't just wander off on some back road to get closer to the wildflowers. We did happen upon some lupines which were growing conveniently along the side of the road. These were the big purple bush-type lupines. They were not growing in any kind of park or protected area, so I tossed a couple of sprigs into the plant press.

Lupine (Lupinus sp.) along Highway 25
25 March 2017
© Allison J. Gong

25 March 2017
© Allison J. Gong

By this time the light was fading as the sun began to set behind the western hills, so we headed home. I made it through three days of riding in the car without having a panic attack, which is much better than my concussed brain could have managed a few months ago. All in all it was a great trip, made even better because we got to spend some time with friends and family. These superblooms don't occur every year, and I'm very glad that I was able to see some of this one.

If you're considering making a trip to see the wildflowers in the desert areas of southern California, stop thinking about it and just go! If you can spare even a single night away, you will see some awesome displays of Nature's majesty. And it won't last much longer, so go now. Don't worry so much about actual destinations; just keep your eyes open for blooms wherever you can see them and be prepared to travel off the beaten path, because the flowers could be anywhere.

Day 2 (24 March 2017): Tehachapi, Antelope Valley, and Wind Wolves

We spent the night in Bakersfield and the next morning (24 March 2017) headed up over Tehachapi Pass and headed into Antelope Valley.

It had been many years since I'd driven over Tehachapi Pass, and I didn't remember ever having seen Joshua trees before. Maybe I was always sleeping on that part of the trip. Once we got past the windmills at the top of the pass--most definitely Not Good for my concussed brain--and started descending into the valley there were Joshua trees all over the place! So cool! And with this year being the 30th anniversary of U2's best (in my opinion) album, how appropriate.

Joshua trees (Yucca brevifolia) in the Tehachapi Mountains
24 March 2017
© Allison J. Gong

To my admittedly inexperienced eye, Joshua trees are the symbols of the Mojave Desert, as the saguaro is the symbol of the Sonoran Desert. None of the Joshua trees that we saw at Tehachapi were blooming, although I heard from a friend that they were in bloom slightly farther south at Lancaster.


Continuing on, we drove through the desert scrubbiness and eventually could see orange splashed onto the distant hills. We stopped to pick up sandwiches at a corner market and then headed towards the Antelope Valley Poppy Reserve. And bang! all of a sudden we were in the poppy fields.

California poppies (Eschscholzia californica) in Antelope Valley
24 March 2017
© Allison J. Gong

California's state flower grows as either a perennial or an annual, depending on how much water it receives. In desert areas in the south it behaves like an annual, whereas in moister areas along the coast and in gardens it can come back as a perennial. There are several subspecies of E. californica, each adapted to a particular habitat within the state. Blossom color varies from a golden yellow (very similar to that of fiddlenecks, actually) to a deep intense orange.

California poppies (Eschscholzia californica) in Antelope Valley
24 March 2017
© Allison J. Gong

Our intent was to stop at the visitor center of the park and pick up a trail map, but we never got there. We arrived at early mid-day on a Friday, when everybody from Los Angeles showed up, and the line of cars trying to get into the park was backed up almost to the road. Um, no thanks. Besides, we saw all these poppies from the road, and could find places sort of off the beaten track with fewer people tromping around with selfie sticks than would be inside the actual park. Now I'm not one to discourage people from visiting our state parks, but if you decide to go here, try to arrive earlier in the morning on a midweek day. And time your visit for a sunny day, when the poppies will be open.

Poppies (Eschscholzia californica) and goldfields (Lasthenia californica) near the Antelope Valley Poppy Reserve
24 March 2017
© Allison J. Gong

Field of poppies (Eschscholzia californica)
24 March 2017
© Allison J. Gong

And looking up towards the hills we saw pastel paintings. The orange flowers are poppies, I'm guessing that the yellow is goldfields, and the purple is lupines.

And in terms of lupines, Antelope Valley was the best place we visited. When we made plans to come here I had grandiose ideas of capturing that perfect iconic photograph of purple lupines and orange poppies together. You know the one. Unfortunately I think we arrive a week or two early to catch the peak of the lupine bloom. I never did see nice full lush poppies and blooming lupines in the same spot.

We did, however, see several nice lupine bushes in the various washes around the poppy reserve. Honeybees were glad to see them, too.

A deep purple lupine (Lupinus sp.) in Antelope Valley
24 March 2016
© Allison J. Gong

A foraging honeybee checks out the lupine blossom
24 March 2017
© Allison J. Gong


As glorious as the poppies were, we needed to keep moving in order to meet up with friends on the coast. Working our way westward we stopped at the Wind Wolves Preserve, an ecological reserve managed by the Wildlands Conservancy. I had never heard of the place and wasn't sure what to expect. What I got was a lovely surprise.

There are, of course, no wolves in this part of California. So then, why the name? According to a sign at the head of the wildflower trail, the name refers to the Preserve's long grasses, which undulate like running animals when the wind blows through them. I wasn't carrying the tripod with me so I didn't try to take any video. However, on our way from Antelope Valley we stopped at Tejon Pass, where the wind was blowing pretty well. I took this video there.

It does look like one of those aerial views of a herd of galloping ungulates, doesn't it? Perhaps not wind wolves, exactly, but at the Preserve it was easy to imagine how the place got its name. The wildflower walk, a bit less than a mile long, winds through rolling hills covered with grasses and dotted here and there with flowers. There were several small groups of people hiking the trail, and it wasn't uncommon to have them disappear completely from the landscape when they got lost in the grasses as the trail dipped into a small depression.

Wind Wolves Preserve
24 March 2017
© Allison J. Gong

Wind Wolves Preserve
24 March 2017
© Allison J. Gong

No doubt the resemblance to running wolves will be stronger when the grasses are a bit taller.

We were perhaps two weeks ahead of the bloom and most of the flowers were just starting to open up. The overall effect was a cool wash of green dotted here and there with bright splashes of color. There were lupines, of a smaller ground-growing type rather than the bush lupines we had seen in Antelope Valley, and a plant that we had first seen a lot of on the Carrizo Plain, another whimsically named flower called purple owl's clover (Castilleja exserta). As its scientific name implies, owl's clover is a member of the paintbrush family of plants.

Purple owl's clover (Castilleja exserta) and a small, dark lupine (Lupinus bicolor, perhaps) among the grasses at Wind Wolves Preserve
24 March 2017
© Allison J. Gong

And this might well be my favorite photo of the entire trip:

Purple owl's clover (Castilleja exserta)
24 March 2017
© Allison J. Gong

Horned lark (Eremophila alpestris)
24 March 2017
© Allison J. Gong

We had already seen many familiar and not-so-familiar birds on the trip, and it was at Wind Wolves that I saw my first ever horned lark (Eremophila alpestris). This individual wasn't very shy at all; it let us approach within 2 meters on the trail before running off ahead to wait for us again. It had such expressive postures, and a curious look on its face. If there hadn't been a family with small kids behind us on the trail, I could have watched this bird for a long time. But we couldn't block the trail just because there was an interesting (to us) bird standing in it, so we let the family pass and the lark flew off into the grasses. They are social birds so no doubt it had friends and family of its own to join.

We saw lizards, too, most notably the western side-blotched lizard (Uta stansburiana ssp. elegans). These lizards have very interesting gender expression, depending on color morph: there are three male morphs (orange-throat, yellow-stripe, and blue-throat) and two female morphs (orange-throat and yellow-throat). Sounds crazy, doesn't it? The female morphs differ in egg-laying strategy. Orange-throat females lay many small eggs and defend territories, while yellow-throat females lay fewer larger eggs and are less territorial.

Western side-blotched lizard (Uta stansburiana ssp.elegans)
24 March 2017
© Allison J. Gong

Work by Barry Sinervo's group at UC Santa Cruz showed that the three male color morphs also have different reproductive strategies. They are locked in an evolutionary game of rock-paper-scissors: each color can dominate one (but not both) of the other colors. Note that in this context 'dominate' doesn't necessarily mean that one lizard beats up the other, but rather has greater reproductive success than the other. Orange-throats are the most typically testosterone-driven males; they are more aggressive towards other males and control territories containing several females. Yellow-stripe "sneaker" males hang around the edges of an orange-throated male's territory and sneak copulations with females while the territory holder's attention is elsewhere. Blue-throats have an intermediate level of aggression; they can defend a single female from other blue-throats and yellow-stripes, but not against an orange-throat. In a nutshell:

  • Orange beats Blue but loses (sometimes) to Yellow
  • Blue beats Yellow but loses to Orange
  • Yellow beats Orange (sneakily) but loses to Blue

Pretty dang cool, isn't it?

Next installment: The voyage home

Day 1 (Thursday 23 March 2017) cont'd.: Carrizo Plain National Monument

The Carrizo Plain is an enclosed grassy plain in the southernmost "toe" of San Luis Obispo County, lying between the Temblor Range to the northeast and the Caliente Range to the southwest. Its average elevation is about 700 meters (2200 feet). The main geological features of the plain are a seasonal lake that receives water from both mountain ranges, and the San Andreas Fault, which runs along the northeast edge of the plain up against the aptly named Temblor Range.

Topo map of the Carrizo Plain

For most of the year the Carrizo Plain is hot, dry, and dusty. For a few weeks in the spring, especially if a decent amount of winter rain has fallen, the Plain explodes with color. As in most of the state the dominant color of the flowers is yellow, and the goldfields (Lasthenia californica) grow in huge swaths. Although it is always fun to focus on individual flowers, which I will do later, at the Carrizo Plain the focus is on the landscape.

Soda Lake Road bisects the Carrizo Plain and passes through so many stunning vistas that it is hard to decide where to look. The eye travels from the side of the road, across Soda Lake, and up against the Temblor Range hills and sees amazing splotches of color. It's quite a spectacular display of natural beauty. Well, there's also the humongous solar farm at the northwest corner of the lake, but let's pretend we don't see it, shall we?

View across Soda Lake Road to the Temblor Range hills
23 March 2017
© Allison J. Gong

In only a few weeks the entire landscape will have transformed from this lush green and yellow to unrelenting dusty brown.

Carrizo Plain
23 March 2017
© Allison J. Gong

Panoramic view of Soda Lake
23 March 2017
© Allison J. Gong

Reflection on Soda Lake 
23 March 2017
© Allison J. Gong

And now let's get up close and personal with some of the flowers. As mentioned above the goldfields were very common. I did not see any tidy tips on the Plain, although of course that doesn't mean they weren't there. One of the most abundant flowers on the Plain is fiddleneck (Amsinckia menziesii), which was just beginning to bloom.

Fields of fiddlenecks (Amsinckia menziesii) on the Carrizo Plain
23 March 2017
© Allison J. Gong

Young fiddleneck (Amsinckia menziesii) blossoms
23 March 2017
© Allison J. Gong

In a couple of weeks the inflorescences will be longer and curled into the shape that gives them their common name, and the overall color of the landscape will shift from the brighter yellow of goldfields to a softer golden shade. Wherever the fiddlenecks occur they are extremely abundant. According to what I've read about this plant, later in the season its seeds will be a major food source for seed-eating birds such as finches and sparrows. I don't remember seeing any finches when we were there, but we did see several white-crowned sparrows flitting about on the tops of the sagebrush.

Baby blue eyes (Nemophila menziesii)
23 March 2017
© Allison J. Gong

Fortunately for the retinas of human visitors, the flowers were not all yellow. Along Shell Creek Road and at the Carrizo Plain there were two types of blue or purple flowers. The bluer of the two, baby blue eyes (Nemophila menziesii) occurred both in small patches on the flats and in big carpets on the hillsides. The bluish patch in the photo of fiddlenecks on the hills (up the page a bit) are all baby blue eyes.

 

The Great Valley phacelia (Phacelia ciliata) is a delicate, periwinkle-colored flower that contrasts beautifully with the golden orange of fiddlenecks. We saw it scattered here and there, and while it wasn't uncommon it never seemed to occur in large patches in the Soda Lake area.

Great Valley phacelia (Phacelia ciliata) and fiddleneck (Amsinckia menziesii)
23 March 2017
© Allison J. Gong

Continuing along past Soda Lake we passed hillsides covered with brilliant yellow and purple flowers. In this area of the Carrizo Plain the phacelia did form larger patches, although they were still not as dense as either the fiddlenecks or the goldfields.

Goldfields (Lasthenia californica, background) and Great Valley phacelia (Phacelia ciliata, foreground)
23 March 2017
© Allison J. Gong

And in case you think there might not have been enough yellow in the landscape: BAM!

Goldfields (Lasthenia californica)
23 March 2017
© Allison J. Gong

Next installment: Antelope Valley and the Wind Wolves Preserve.

%d bloggers like this: