Skip to content

A week ago I snagged a stint with a traveling nature journal that is making the rounds. It's a nature journal that is being sent to whoever wants to take it. Each user keeps the journal for five days or until five pages are filled, then sends it on to the next person. I was lucky enough to be the first person to respond when it became available, and the journal arrived chez moi this past Monday.

I gotta say, thumbing through the journal and looking at the work of the folks who had it before me was both thrilling and a little intimidating. But it was so exciting to get to study other people's nature journal pages. Just seeing the different styles and focuses was a fantastic learning experience for me. At first I wondered how the heck I would find five pages' worth of stuff to write/draw about in five days. However, something about having the book in hand released the mental block and stuff just flowed onto the pages. Oh, there was a lot of erasing and a little trepidation the first time I put pen to paper, but overall it was a lot of fun.

Anyway, here are my pages.

Monday 2021-05-17 I found the not-so-secret nesting spot for the Brandt's cormorants. This is apparently a new site for them. I had a lot of fun with the cormorants on the rock—all those postures to study and draw! And I'm very pleased with the larger pair in the corner. They actually look like cormorants!

Tuesday 2021-05-18 The journal has both white paper and tan toned paper. Nobody had used any of the toned pages yet. I decided to use it for these sketches of blooming sand plants. My favorite sketch on this page is the California poppies.

Wednesday 2021-05-19 While flipping through the photos I had taken at Asilomar over the weekend, I decided to draw some of the molluscs. My favorite on this page is the turban snail. And octopuses are really hard to draw!

Thursday 2021-05-20 I used my last two pages to diagram sea urchin larval development. The difficult thing about this page was getting the layout to flow the way I wanted. I used about half an eraser, trying different arrangements of text and drawings! The sketches themselves were not that difficult, as I've drawn these larvae many times before.

So there you have it—a week's worth of nature journaling. It was an immense honor and pleasure to participate in this living document of nature observations. I've sent the traveling journal up to Anchorage, Alaska, and am excited to see what the next person does with it.


As we speed towards the summer solstice the days continue to get longer. The early morning low tides are much easier to get up for, as the sky is lightening by 05:30. Even so, when traveling an hour to get to the site, it's nice when the low is later than that. This past Saturday the low wasn't until 08:00. My parents were in Monterey for the weekend, so I decided it would be a good day to work the tide at the southern end of Monterey Bay, and then visit my parents. The Monterey Peninsula has some of the most spectacular tidepooling terrain in the region, and if I lived closer you can bet I'd know those sites better. Not that there is anything at all wrong with the sites on my end of the Bay and up the coast. But sometimes it's good to get out of one's comfort zone and explore the less well known.

Rocks and tidepools
Rocky intertidal at Asilomar State Beach
© Allison J. Gong

So explore we did. It was cold and windy. The tide wasn't all that low and the swell was up, so we didn't get beyond the mid-tidal zone. My hip boots have deteriorated to the point that I have pinprick leaks at the seam where the boot part meets the leg part. Usually the tiny leaks don't bother me, but when the water is cold I definitely feel the trickles. What all this means is that I didn't get down into the low zone, which is fine. Biodiversity is highest in the mid zone anyway. The mediocrity of the low tide meant that I had to keep an eye out for sneaker swells, so less heads-down poking around and more scanning from above and then zooming in on individual items of interest.

One thing we noticed right away is that groups of Tegula funebralis, the black turban snail, were clumped together above the waterline of the high pools.

I'm trying to decide whether or not this is noteworthy. The pattern did catch my eye, but that might be only because it's unusual (although not particularly interesting). It was a cold and drizzly morning, so the snails didn't have to worry about desiccation. Was the clumping together benefiting the snails in any significant way? Hard to say.

The T. funebralis were also clumping together in the water! Here's a large clump of Tegula shells in a pool.

Clump of black turban snails in a tidepool
Black turban snails (Tegula funebralis) and one hermit crab (Pagurus samuelis)
© Allison J. Gong

Almost all of these are snails, but can you see the one that is a hermit crab?

Poor Tegula funebralis. It is so common that it is invisible and vastly underappreciated. I find them quite charming, though. There's something about a grazing snail's slow way of life that is very soothing. Not that you might not fall asleep waiting for them to do something interesting, but it is good to slow down to the pace of nature. Anyway, Tegula is one of my favorite animals, precisely because it is so unassuming and ignored. One of delightful things about Tegula funebralis is when it plays host to Crepidula adunca. I've written about the biology of C. adunca before and don't want to rehash that here. I just wanted to show off my favorite photo of this trip to Asilomar:

Black turban snail with two attached slipper snails
Black turban snail (Tegula funebralis) wearing two slipper snails (Crepidula adunca)
© Allison J. Gong

I don't know why I like this photo so much. It certainly isn't the best shot I've ever taken. There isn't any vibrant color at all. The subjects are the same color as the background. But it works for me.

When it comes to a snail's pace, you can't find anything slower than Thylacodes. That's because Thylacodes squamigerus is the snail that lives in a calcareous tube. Much like a barnacle, or the serpulid worms that have similar tubes, Thylacodes makes one decision about where to live and lives there for the rest of its life. I see Thylacodes at places like Pigeon Point up north, but they are much more abundant on the Monterey Peninsula.

Tube snail (Thylacodes squamigerus)
© Allison J. Gong

And the snail winners in the Most Likely to be Overlooked have got to be the littorines. These little snails (most of which are smaller than 15 mm) live in the highest intertidal, where they get splashed by the ocean just often enough to keep their gill sufficiently moist. They are never entirely submerged, but they do tend to gather in cracks, even the tiniest of which will hold water longer than a flat rock surface.

Littorines (Littorina keenae) in the splash zone
© Allison J. Gong

If you look closely at the photo above, you might see pairs of mating snails. Given where they live, high up in the intertidal where they are rarely covered by water, broadcast spawning isn't a viable option for the littorines. They have to copulate. There are, I think, eight copulating pairs in this group of ~30 snails.

Copulating pairs of Littorina keenae
© Allison J. Gong

Because Littorina's habitat makes broadcast spawning an unfeasible option, the snails must lay eggs. But the splash zone isn't a very friendly place for the eggs of marine animals. The littorines lay eggs in gelatinous masses in crevices or depressions where water will remain. After a week or so of development, the egg mass dissolves as it gets splashed, and veliger larvae emerge. They recruit back to the intertidal after spending some period of time in the plankton.

When all is said and done it's difficult to make the claim that snails live exciting lives. Nonetheless, they are interesting animals. The diversity of morphology and lifestyle we see in the intertidal snails makes them eminently worthy of study and appreciation. I like to think that, as biologists once again "discover" the usefulness of natural history, students will be encouraged to fill in some of the gaps in our understanding of these and other abundant animals.

It never really feels like springtime until the swallows have returned to the marine lab. This year the barn swallows (Hirundo rustica) came back right on schedule in the last week of March. They have been flying around ever since. I've seen them gathering mud on the banks of Younger Lagoon, but they haven't been very serious about nest building. The cliff swallows (Petrochelidon pyrrhonota), on the other hand, were late arrivals, and I was beginning to worry about them. I didn't see the first cliff swallow until the 1st of May.

Unlike the barn swallows, the cliff swallows immediately started spackling mud on the buildings. There have been a few aborted attempts, but overall they have been very busy little birds. I've been keeping an eye on one nest in particular, as it seems to be the one progressing most rapidly. This nest is located on a building that has been used every year, by both barn swallows and cliff swallows. In previous years I've seen and photographed the nests side-by-side. There isn't any reason to expect them not to nest together again.

So here's what has been going on so far.

The first stage is a simple shelf of mud. The birds are building on vertical walls, but corners where they can use two walls are prime locations. Even a tiny ledge can be used to support those first splats of mud, and once the mud dries it becomes foundation for additional layers. See the mud in the swallow's beak?

Sometimes the birds get this far and then decide to abandon the nest. And sometimes they keep going. Here's what's going on less than a meter away from this nest.

Four cliff swallows building mud nests on wooden walls
Cliff swallows (Petrochelidon pyrrhonota)
© Allison J. Gong

Notice how the birds use their tails as braces so they can cling onto vertical walls. Woodpeckers do the same thing. Of the four birds in the photo above, the two outer ones look like they're just starting to build. I've seen two birds flying in and out of that larger nest, but have no idea whether or not they're the same two birds every time. I suspect they are a mated pair.

The cliff swallow's nest is the gourd-shaped one, with a body that narrows to a much smaller opening just big enough for one bird to pass through. When the nest I was watching got to the stage in the photo above, I thought the opening would be on the left, since there's already a nice curve along that side of the front edge.

I might be kind of right. Today the opening is much narrower, and located off-center towards the left.

Cliff swallow nest on wooden walls
Cliff swallow (Petrochelidon pyrrhonota) nest
© Allison J. Gong

This nest may be finished tomorrow or the next day. It will have taken the birds about a week from start to finish.

Why are there no birds near the nest, you may ask? Well, when I walked out of the building I noticed that all of the swallows were in the air, and nobody was at the nest site. The birds were making alarm calls and flying around, but it didn't look like they were feeding, and none were returning to the nests even for short visits. I looked around and up and found the reason for the swallows' unrest.

Red-tailed hawk (Buteo jamaicensis)
© Allison J. Gong

The hawk was perched directly across from the swallows' nest site, and the swallows were not happy about it.

(For some reason the embedded video isn't working right now. You can watch it from YouTube directly by clicking on that link in the lower left corner.)

Some of the swallows flying around the hawk were barn swallows. I think they are nesting in the breezeway of the building under the hawk. Anyway, the hawk's presence was obviously upsetting to all of the swallows. It hung out for about 10 minutes and then flew away over the field. And immediately, the cliff swallows got right back down to the important business of building a home for the next generation.

A few weeks ago I went out to Franklin Point and saw that the sea lettuces (Ulva sp.) were spawning in the high pools. I revisited the site today, with a lower tide to work with, and spent a considerable amount of time looking for and photographing the staurozoans. I did find some, too! But they are not the focus of this post.

As the tide came back in, I spent more time working my way through the higher pools. At Franklin Point there are very few places where the water is still. Even in the high regions the intertidal terrain is more surge channels than pools. But if you go high enough up the beach there are some quiet areas where the water, if it moves, does so very slowly. It is in these areas where the algal spawn forms those beautiful patterns that I photographed at the beginning of the month. Today there was much less algal spawn accumulating in the calm areas. It was also windy (and cold) this morning, so the patterns were not as crisp as they had been in early April. Still pretty, though!

Algal spawn on surface of a tidepool
Ulva spawn on surface of tidepool at Franklin Point
© Allison J. Gong

On my way back up the beach I saw something that looked like an iceberg viewed from the air.

Foam on surface of water
© Allison J. Gong

This is an accumulation of foam being pushed ashore. I didn't have any way to collect a sample to bring back to the lab for closer observation, but foams like this are usually due to algal particulates. Surface agitation whips up the organic matter, which act as surfactants and produce tiny bubbles. I'd be willing to bet that the Ulva spawn is at least partly responsible for this foam.

I watched the foam for several minutes, and was rewarded for my vigilance. I found an area where the highest reach of the incoming tide was gently washing back and forth.

I found the slow swirling to be rather mesmerizing. Maybe that was due to the early morning, the brisk sea air, or hunger pangs. But when I saw this I thought to myself, "I've seen that somewhere before." You might be able to guess where.

Swirling foam on the surface of the water at Franklin Point
© Allison J. Gong

To validate my intuition, when I got home I looked up some images and found that I was sort of right after all.

The Starry Night by Vincent van Gogh, 1889
Public domain - Google Art Project

Okay, so maybe the resemblance isn't as strong as all that. But I can still imagine the streams in van Gogh's painting swirling and flowing the way the algal foam does. What do you think?


Way back in 2015 I wrote about some Ulva that spawned in a bowl at the lab, and delved into the mysteries of reproduction in the green algae. This morning I was out at Franklin Point and saw this:

Spawning algae at Franklin Point
© Allison J. Gong

I had seen the sea lettuces (Ulva spp.) spawning in these high pools at Franklin Point before, and usually cursed the murkiness of the water. But today the water was dead calm, with the tide low enough that there were no waves to slosh into the pools. The result was a gorgeous marbled swirl in the water. The patterns were stunning.

Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
© Allison J. Gong
Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
© Allison J. Gong
Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
© Allison J. Gong

What these photos show is the Ulva releasing either spores or gametes. Without microscopic examination it's impossible for me to know whether these tiny cells are spores or gametes. What I can say is that the spawn is released from the distal ends of the thallus, making the body of the alga look ragged.

Sea lettuce in a tidepool. Some blades are clear.
Sea lettuce (Ulva sp.) at the edge of a tidepool at Franklin Point
© Allison J. Gong

The parts of the thallus that have already spawned are now clear. The tissue itself will soon disintegrate, leaving behind only the healthy green parts, which should be able to regrow.

All of these photos were taken in pools where the spawning itself had either completely or mostly stopped. Obviously when the tide comes back all of this yellow spooge will get mixed up. It's only when the water is perfectly still that these streams would form. It was hard stepping around the pools to take the photos, as the last thing I wanted to do was stomp my big booted foot into a pool and disrupt the beautiful patterns. Fortunately the sun angle was a little cooperative this morning, and I was able to find a pool where active spawning was happening.

What appears to be an act of destruction—the alga's brilliant green thallus being reduced to yellow streaks that drift away with the tide—is really an act of procreation. This is terminal reproduction, literally the last thing an organism does before it dies. Salmon do this, as do annual plants. The sheer amount of algal spawn in these tidepools is astounding. Imagine the number of 2-micron cells needed to color the water to this degree. But if reproducing is the last thing you're going to do in your life, you might as well go all in on your way out, right?

Intact shells are a limited resource in the rocky intertidal. Snails, of course, build and live in their shells for the duration of their lives. A snail's body is attached to its shell, so until it dies it is the sole proprietor of the shell. Once the snail dies, though, its shell goes on the market to whoever manages to claim it. Empty shells tend not to remain on the market for long.

Hermit crabs also live inside snail shells. They are the ones that compete for empty shells when they do become available. Here in California, at least, the hermit crabs can't kill snails for their shells; they have to wait for a snail to die. And once a shell comes on the market, it will have a taker even if it's not the ideal size for the crab. It's not at all uncommon to see hermit crabs that can fit only their abdomen into the shell, leaving the head and legs exposed and vulnerable. On the other end of the spectrum, many hermit crabs are so small that they can pull into the shell and not be seen by an inquisitive tidepool visitor. Anybody taking a snail shell home as a souvenir—where such takes are allowed, of course—must be certain that there is no tiny hermit crab hiding deep in the depths.

Hermit crab in black turban snail shell
Hermit crab (Pagurus samuelis) in shell of turban snail (Tegula funebralis) at Point Piños
© Allison J. Gong

From a hermit crab's perspective, the best shell is one that is big enough to retreat into but light enough to be carried around. Snail shells come in a variety of shapes and corresponding internal volumes. Turban snails, with their roughly spherical shape, have a large interior space and are coveted by larger hermit crabs. For example, the grainy hand hermit crab (Pagurus granosimanus) seems to really like both black and brown turban snail shells.

Original inhabitant and builder of the shell:

Brown turban snail partially withdrawn into shell
Brown turban snail (Tegula brunnea) at Pistachio Beach
© Allison J. Gong

And opportunistic second inhabitant of the same type of shell:

Grainy hand hermit crab in turban snail shell
Grainy hand hermit crab (Pagurus granosimanus) in brown turban snail (Tegula funebralis) shell
© Allison J. Gong

Other snails are not even remotely spherical. Olivella biplicata, for example, is shaped like the pit of an olive. Unlike Tegula, of which both intertidal species are found in rocky areas, O. biplicata burrows in sand. Note the shape and habitat of this olive snail:

Olive snail
Olive snail (Olivella biplicata) burrowing through sand at Whaler's Cove
© Allison J. Gong

These olive snails have a smaller internal volume, and thus tend to house smaller hermit crabs. Young individuals of P. granosimanus can be found in olive snail shells, but they quickly outgrow the cramped quarters and need to find a larger home. Smaller hermits such as Pagurus hirsutiusculus, though, are often found in olive shells.

Any hermit crab that finds itself robbed of its snail shell has a short life expectancy. The front end of the hermit resembles the front end of any crab, with the familiar armored legs, claws, eyestalks, and antennae. But the abdomen is soft and unarmored, covered by only a thin cuticle. The abdomen is coiled to follow the coiling of the snail shell, which allows the crab's body to curl around the columella, the central axis around which the shell spirals. In this way the crab can hang onto its snail shell and resist a tug by a would-be predator. A strong enough tug, though, will rip the crab's front end (head + thorax) away from its abdomen. So if you ever find yourself with a hermit crab in hand, do not be tempted to remove it from its shell by yanking it out!

The next time you encounter gastropod shells in the tidepools and want to know whether the inhabitant is a snail or a hermit crab, watch to see how it moves. Hermit crabs scuttle, as crabs do, while snails glide along very slowly. You would also notice a difference as you pick up the shell: snails stick to the rock with their foot, which you will feel as a suction. Hermit crabs don't stick at all, so if the shell comes away easily it likely houses a crab instead of a snail. See? Easy peasy lemon squeezy!

Sometimes even a well-known site can present a surprise. Here's an example. Yesterday I went up to Davenport to scope things out and see how the algae were doing. This is the time of year that they start growing back after the winter senescence. I also took my nature journal along, hoping to find a spot to sit and draw for a while.

The first thing I noticed was the amount of sand on the beach. Strong winter storms usually carve sand off the beaches, making them steeper. And during the calmer months of summer the beaches are flatter and less steep. Yesterday the beach was very thick and flat. It makes trudging across the sand in hip boots much easier!

The accumulation of sand meant that I could walk around the first point. Unless the tide is extremely low, such as we see around the solstices, the water is too deep for that. But yesterday I walked around it, and it wasn't until I got to the other side that it occurred to me that: (1) hey, I walked around the point; and (2) I could do that only because there was so much sand. See, a thick beach with a lot of sand makes a mediocre low tide feel lower because the water isn't as deep as it would be if the beach were thinner. When the tide isn't low enough for me to walk around the point, I have to clamber down a cliff. The cliff height varies depending on how much sand has built up, obviously, but is about head height for me. Getting down usually involves scooting on my butt and hoping my feet land on something that isn't slippery. As with most climbing, up is easier and less scary than down.

It's hard to imagine the amount of sand there was yesterday. Look at this picture.

Flat rock area and sandy area
North of Davenport Landing Beach
© Allison J. Gong

See how the rocks in the foreground end? Usually that's the edge of the cliff. Yesterday I could have just taken a tiny step off the top of the cliff onto sand. That's over 1.5 meters of sand in that one spot! If the couple in the background were visiting this area for the first time, they'd have no idea of the conditions that made it so easy for them to get out onto the reef.

There was a lot of sand in the channels between rocks, too.

Sand between rocks in the intertidal
Intertidal area north of Davenport Landing Beach
© Allison J. Gong

Normally those channels are deeper. You can see that some anemones were able to reach to the surface of the sand, but many more are buried, along with any other critters and algae unfortunate enough to be attached to the lower vertical surfaces. And while some of them will either suffocate or be scoured off as the sand washes away, many will survive and be ready to get on with life.

The second surprise of the day was a bright orange object. What I could see of it was about as big as my thumb, and at first I thought it was a nudibranch. Then when I crept closer for a better look, what popped into my head was "snailfish". Which was an odd thing, because I'd never seen a snailfish before. But something about the creature's posture looked somehow familiar.

Orange fish with large head and tail wrapped around the body
Tidepool snailfish (Liparis florae) at Davenport Landing
© Allison J. Gong

Fortunately I had the presence of mind to take photos before trying to draw this little fish, because this is all I had time to get:

When I spooked the critter it took off really fast, confirming that it was no nudibranch. It was, indeed, a snailfish! It came to rest in a small hole in a rock, from where it looked out at me.

Tidepool snailfish (Liparis florae) at Davenport Landing
© Allison J. Gong

The snailfishes are a very poorly studied group. As a group they are related to the sculpins. There are snailfishes throughout the northern temperate and polar regions, from the intertidal to the deep sea. iNaturalist shows 43 observations of L. florae, eight of which are in California. Before yesterday, none had been recorded at Davenport Landing.

Map of northeast Pacific coast, showing sighting of tidepool snailfish recoreded in iNaturalist
Observations of tidepool snailfish (Liparis florae) recorded in iNaturalist
© iNaturalist

So there you have it, a snailfish! We don't know much about any of the snailfish species, even the intertidal ones. They apparently have pelvic fins modified to from a sucker, similar to the clingfishes, but I didn't have a chance to examine this specimen closely enough to confirm that. I don't know why they are called snailfishes, either. They're not snail-shaped at all.

Now, about that thing up there where I said "snailfish" came to mind even though I'd never seen one before. That happens quite a bit—a name will jump into my head before I've had a chance to think about it. Sometimes I'm wrong, but often I'm right. I know I hadn't seen a live snailfish before, but obviously I'd seen photos of them or I wouldn't have been able to recognize this orange creature as being one. It's fascinating how the brain forms search images, isn't it?

During what has become my daily check to see what's going on in Younger Lagoon, I got totally lucky and was able to see and photograph lots of birds. A morning with mostly cloudy skies meant good light for picture-taking. So I took lots of pictures! Some of these are series and need to be viewed in order to see the action. Sure, I could have just shot videos, but where's the fun in that? Sometimes still photos show a lot more than video.

It was a great day to watch wading birds! Legs and beaks come in varying lengths, and a particular species' combination of beak length and leg length determine where and how the bird forages.

Long-billed curlews, snowy egret, and marbled godwit on the beach at Younger Lagoon
Shorebirds at Younger Lagoon. Left to right: Two Long-billed curlews (Numenius americanus); snowy egret (Egretta thula); long-billed curlew; marbled godwit (Limosa fedoa)
© Allison J. Gong

While the long-billed curlew (N. americanus) has the longest beak-length-to-head ratio of any bird, the marbled godwit and whimbrel also have impressively long bills. In the photo below, the three birds with slightly downcurved beaks are whimbrels (Numenius phaeopus) and the one bird with the two-toned straight beak is the godwit (Limosa fedoa). Most of the godwits I've seen have beaks that are a smidge upturned, but this one looks pretty straight to me.

Whimbrels and marbled godwits in the surf zone at Younger Lagoon
Shorebirds at Younger Lagoon. Three whimbrels (Numenius phaeopus) with downcurved beaks and one marbled godwit (Limosa fedoa) with straight beak
© Allison J. Gong

All of these birds forage by probing the sand with their beaks. All sorts of infaunal invertebrates are taken, and the mole crab Emerita analoga is a favored prey item. Obviously a longer beak allows for deeper probing in the sand, and the variation in beak lengths among the shorebird species may allow for niche partitioning. In other words, a long-billed curlew can reach down for prey items that are unavailable for birds with shorter beaks. The flip side of this equation is that birds with the "short" beaks might be better at picking up prey buried that are buried at shallow depths.

Prey are also distributed patchily along the beach itself, from the surf zone to the dunes, and these birds forage in the entire range. The length of the legs determines how far down into the surf zone they can go. When the beach is steep, as it is now at Younger Lagoon, the birds don't have much time to dig around in the surf zone before the next wave comes up. Click through the slide show to see this group of godwits, curlews, whimbrels, and a snowy egret react to an oncoming wave. It's important to note that while these birds do have some waterproofing in their feathers, they do not swim. Nor can they take flight if their feet aren't on the ground. Getting swept up by a wave and carried off the beach would likely be deadly for them.

The long-billed curlew is a favorite of mine, because I can't imagine what it would be like to go through life with a 2-meter beak sticking out of my face. They are fun to watch, and can probe remarkably fast with that long beak. This is one of the phenomena that is best shown by video.

You can watch how the birds forage within the surf zone, as in the slide show above, and also how long-billed curlews probe the sand higher up the beach.

Shorebirds foraging at Younger Lagoon
© Allison J. Gong

These long-legged wading birds also feed in protected bodies of water and estuaries. All of these species can be seen at Elkhorn Slough as well as on the open coast, as one would expect from the Slough's position along the Pacific Flyway. Some birds migrate to California from far away. Marbled godwits, for example, spend the summer breeding season in the interior regions of North America, and winter along the Pacific, Gulf of Mexico, and Atlantic coasts. The long-billed curlew also breeds in the interior of the continent. Snowy egrets, on the other hand, are year-round residents.

I am grateful to have access to places like Younger Lagoon, where I can spend time outdoors without other people around, remove my mask, and take pictures of birds. I love that the Younger Lagoon Reserve has so many different habitats to explore, from ocean to beach to dunes to coastal scrub, in a small area. Fingers crossed that sooner rather than later, we'll be able to once again bring students there to study the natural world in the Reserve's outdoor classrooms.


On the penultimate day of 2020 I met up with my goddaughter, Katherine, and her family up at Pigeon Point to have two adventures. The first one was to find a marble that had been hidden a part of a game. We got skunked on that one, although the marble was found after we left and the hider had sent an additional clue. The second adventure was an excursion to the tidepools. I've had a lackadaisical attitude towards the afternoon low tides this winter, not feeling enthusiastic about heading out with all of the people and the wind and having to fight darkness. But the invitation to join the marble hunt, on a day with a decent low tide, meant that I could spend a good deal of quality time with Katherine.

It is not unusual for a promising low tide to be cancelled out by a big swell. It happens, especially during winter's combination of afternoon lows and occasional storms. The swell yesterday was pretty big.

Here's the view to the north, from Pigeon Point:

Looking north from Pigeon Point
View to the north from Pigeon Point
©Allison J. Gong

All that whitewash breaking over the rocks is not good for tidepooling, especially with small kids in tow.

This is how things looked to the south of the point:

View to the south from Pigeon Point
©Allison J. Gong

This is Whaler's Cove, a sandy beach that lies on the leeward side of the point itself. See how the water is much calmer? It's amazing how different the two sides of the point are, in terms of hydrography, wind, and biota. The south side is much easier to get to, especially for newbies or people who are less steady on their feet. Being sheltered from the brunt of the prevailing southbound current means that the biological diversity is, shall we say, a bit subdued when compared to what we see on the north side of the point.

I first took Katherine tidepooling when her sister, Lizzie, was an infant riding in her mom's backpack. Katherine was about four at the time. Her mom and I were suprised at how much she remembered. She recognized the anemones right away, even the closed up cloning anemones (Anthopleura elegantissima) on the high rocks. She remembered to avoid stepping on them—that's my girl!

She wasn't all that keen on touching the anemones, though, even after we told her it feels like touching tape.

Giant green anemone in tidepool
Giant green anemone (Anthopleura xanthogrammica)
©Allison J. Gong

She did like the sea stars, too. Purple is my favorite color and I think hers, too, so the purple and orange ochre stars were a hit. It was nice to see two large healthy ones.

I had some actual collecting to do, so it was a work trip for me. Late December is not the best time to collect algae, but I wanted to bring some edible seaweeds back to the lab to feed animals. We haven't had any kelp brought in since the late summer, and urchins are very hungry. They will eat intertidal seaweeds, though, and when I go out to the tidepools I bring back what I can. It will be a couple of months until we see the algae growing towards their summer lushness, but even a few handfuls of sea lettuce will be welcome to hungry mouths.

Bright green sea lettuce growing with red algae
Sea lettuce (Ulva sp.)
©Allison J. Gong

Katherine and I walked up the beach for a little way to study one of the several large-ish crab corpses on the sand. This one was a molt rather than an actual corpse.

Rock crab molt on sand
Rock crab (Romaleon antennarium) molt
©Allison J. Gong

Katherine found the missing leg a little way off, and we discussed why we call these limbs legs instead of arms. "They use their claws to pinch things, like hands," she said. Not wanting to get into a discussion of serial homology and crustacean evolution with a 6-year-old, I told her that calling the claws "hands" isn't a bad idea, since they are used a lot like the way we use our hands. But, I continued, the crab walks on its other limbs like we walk with our legs, so can we call those legs? She was happy to agree with that. I can tell I will have to be careful about how I explain things to her, so that she doesn't come up with some wonky ideas about how evolution works.

In the meantime, Lizzie, the little sister, was having a grand old time. She flooded her little boots without a complaint and, after her mom emptied the water from them, squelched happily along with soggy socks. That girl may very well grow up to be a marine biologist!

Once the sun went behind the cliff it started getting cold. With one child already wet we decided to head back. On our way up the beach we saw this thing, which I pointed out to Katherine:

"What is it?" she asked. When I asked what she thought it was she cocked her head to one said and said, "It looks like a rock." Then I told her to touch it, which she didn't want to do. So I picked it up and turned it over, to show her the underside:

Gumboot chiton (Cryptochiton stelleri)
©Allison J. Gong

These big gumboot chitons do look more interesting from this side, because you can at least see that they are probably some kind of animal. Katherine had seen some smaller chitons on the rocks, so she had some idea of what a chiton is, but these are so big that they don't look anything like the ones we showed her earlier. Plus, with their shell plates being covered with a tough piece of skin and invisible, there are no outward signs that this bizarre thing is indeed a chiton. Katherine was not impressed.

At this time of year, when the sun decides to go down it goes down fast. But as we were walking back across the rocks the tide was at its lowest, so there was more terrain to explore. Then it was back up the stairs to the cars, where we could get warm and dry.

Beach and lighthouse at Pigeon Point

Oh, and Katherine and her mom and sister were able to find the hidden marble! They also hid one of their own for someone else to find.


22 August 2020

Scorched tanoak (Neolithocarpus densiflorus) leaves

As I write these words, a massive and powerful wildfire is raging through the Santa Cruz Mountains, approaching the city of Santa Cruz from the north and west. This morning's stats:

  • 63,000 acres burnt/burning
  • 5% containment
  • 1157 people fighting the fire (roughly 10% of what is needed to fight a fire of this size)
  • firebreaks constructed to protect the city and university
  • firefighters coming from out of the area and out of state

Much of the terrain burning is redwood forest. Big Basin Redwood State Park has burnt extensively. All park buildings and campgrounds have been severely damaged if not destroyed. Up the coast from me at Waddell Creek, the fire burned all the way to the ocean. Rancho del Oso, the nature center at the bottom of Big Basin at Waddell Creek, is in the middle of the forest; I don't know whether or not it still stands.

Each of these leaves tells the story of the destructive power of Nature. Most of them are from tanoak trees (Neolithocarpus densiflorus) or California bay laurel (Umbellularia californica), both of which are very common understory trees in redwood forests. For the past week, charred leaves have been tossed by updraft and carried along the wind, to be deposited miles away. Fortunately they are no longer acting as live embers when they touch down.

My camera gear is all packed up, in case we need to evacuate. I took these photos with my phone when I went to the marine lab this morning. They are completely unaltered. If they look a little too orange, well, that's how everything looks right now.

Why did I feel compelled to take these pictures? I think it's because the damage to Nature caused by Nature should be acknowledged as well as the damage to human lives, homes, and health. What I'm about to say may sound insensitive. I do not want to diminish the human tragedy of lost homes, livelihoods, and health. But I do want to shift my personal focus a little bit, because dwelling on all that has been and could be lost only renders me unable to function. If I can think about the future, perhaps even the long-term future far beyond my own life, I feel more grounded and ready to deal with the now.

What is and has been happening to the redwood forests is absolutely tragic. But the redwoods themselves are fire-adapted and resilient. The forest will recover. Already there are Facebook groups organizing to help the residents who have been displaced, begin the long and arduous process of cleaning up once the fire crews give the okay to do so, and start thinking about long-term monitoring of the forest's recovery. From a purely ecological perspective, it will be fascinating to document the process of secondary succession.

But before any of that can happen, human safety is the top priority. We are far from the end of this ordeal. While the weather has cooperated the past couple of days, with cooler temperatures and higher humidity thanks to the return of the marine layer, the forecast calls for 20-30% chance of lightning weather Sunday through Tuesday. That means more lightning strikes and more fires starting. We were visited by a firefighter yesterday afternoon, who told us that while we were not in the immediate evacuation zone we need to be ready to go. She advised us to do the usual fire prevention stuff—clear out a defensible space around the house, make sure there's no leaf litter or debris on the roof, etc. So we did. And now we stay indoors as much as possible, as the air quality outside is dismal. And we wait.

%d bloggers like this: