Skip to content

Last week we had some of the best low tides of the season, and I was grateful to spend three consecutive mornings in the intertidal. The picture-taking conditions were fantastic when I went to Natural Bridges, and I snapped away like a madwoman. Unfortunately, last week was also finals week, and it wasn't until I got all of the grading done and actual grades submitted that I let myself look at the photos. And there were a lot of good ones!

There are many wonderful things about the early morning low tides. One of the best is that most people prefer to remain in bed rather than get up before the sun and splash around in cold water. The past several weeks had been very busy, with little time for solitude, and I badly needed some time by myself in nature.

Usually when I post an entry here I have a story to tell. This time I don't, unless the photos themselves tell the story. Let me know what you think.

Rocks covered in green surfgrass and brown seaweed, surrounded by water. Wave breaking in the background. Clouds in the sky.
Low intertidal at Natural Bridges
2022-05-17
© Allison J. Gong

Act I

At this time of year the algae are the stars of the show. They are at their most lush and glorious for the next several weeks.

Brown and dark iridescent seaweeds on rocks
Assemblage of mid-intertidal organisms
2022-05-17
© Allison J. Gong

Even in the sand, the algae were abundant and conspicuous. In the low intertidal the most prominent algae are the kelps. Here the feather boa kelp (Egregia menziesii) and the various Laminaria species are doing really well. Egregia also occurs higher in the intertidal, but Laminaria and Macrocystis (just visible along the right edge) are low intertidal and subtidal species.

Kelps (Egregia menziesii, Laminaria setchellii, and Macrocystis pyrifera) in the low intertidal
2022-05-17
© Allison J. Gong

My absolute favorite sighting of the morning was this group of algae on top of the sand. I love the way that the algae are splayed out. They are just so pretty!

Assemblage of algae in the sand
2022-05-17
© Allison J. Gong

Macrocystis pyrifera is justifiably well known as the major canopy-forming kelp along our coast. But it does occur in the low intertidal, as mentioned above.

Long strands of golden-brown seaweed
Giant kelp (Macrocystis pyrifera)
2022-05-17
© Allison J. Gong

Intermission

Act II

And now to focus on some individual organisms. Starting with my favorites, the anemones. This time it was the giant green anemone, Anthopleura xanthogrammica, that was the star of the show.

Large bright green sea anemone
Green anemone (Anthopleura xanthogrammica)
2022-05-17
© Allison J. Gong

I experimented with close-up shots, too!

There was a clingfish (Gobiesox meandricus), in its usual under-rock habitat. Don't worry, I made sure to carefully replace the rock as I found it. This fish was about 10cm long. It may be the first clingfish I've ever seen at Natural Bridges. Clearly, I need to do more rock flipping.

Mottled brown fish with large head, on a rock
Northern clingfish (Gobiesox meandricus)
2022-05-17
© Allison J. Gong

A clingfish's pelvic fins are fused together and modified to form a suction cup on the ventral surface. Clingfish can hop around a bit and are super cute when they eat. They sort of dart forward and land on the food, then shuffle around as they ingest it.

The coralline algae were both abundant and flourishing. They are looking fantastic this season. Someday I'll study up on the coralline algae and write about them. For now, here are some happy snaps of Bossiella.

Pink, stiff, seaweed. Body of repeated sections.
Bossiella sp., one of the erect coralline algae
2022-05-17
© Allison J. Gong

Such a beautiful organism!

Sticking with the pink theme, another oft-overlooked organism is the barnacle Tetraclita rubescens. It has a few common names, including pink volcano barnacle and thatched barnacle. It is the largest of the intertidal barnacles along the California coast, and can be fairly abundant in some places. It is never as abundant as the smaller white (Balanus glandula) and gray/brown (Chthamalus dalli/fissus) barnacles, though.

Large pink barnacles on a rock
Tetraclita rubescens, the large pink barnacle
2022-05-17
© Allison J. Gong

Which brings us to my favorite color, purple. The tentacles of the sandcastle worm, Phragmatopoma californica, are a beautiful shade of purple. You don't get to see the tentacles unless the worm is under water, and with the tide as low as it was when I was there this past week, it wasn't easy finding any Phragmatopoma that were submerged. I've written about Phragmatopoma before, so won't go into details here. But look at all those fecal pellets!

Tentacles of the sandcastle worm, Phragmatopoma californica
2022-05-17
© Allison J. Gong

And last but not least, here are a couple of the many purple urchins (Strongylocentrotus purpuratus) out there. At Natural Bridges there's a large pool fairly high in the mid-intertidal that is called the Urchin Pool because it contains dozens (hundreds?) of urchins. Most of them are burrowed into the soft rock. Those are sort of easy pickings. I like finding urchins in less-obvious places, like these.

Purple urchins (Strongylocentrotus purpuratus) tucked into burrows
2022-05-17
© Allison J. Gong

Urchins in the intertidal often cover themselves with bits of shell, small pebbles, and algae. This helps them retain water as the tide recedes. At a location where the rock is soft, such as Natural Bridges, many of the urchins have grown larger than the opening to their burrow and cannot leave to forage; these imprisoned urchins have to wait for pieces of algae to drift nearby, which they can grab with their tube feet and then transport to the mouth on the underside. So long as they don't get pried out by otters, the urchins seem to do just fine.

I think that's enough for now. I hope these photos give you some idea of what it was like out there a week and a half ago. The next excellent low tide series is in mid-June. Snapshot Cal Coast will be in full swing then, so get out there if you can!

Row of people with backs to the camera, standing on a bluff and looking out over the ocean

For the final field trip of the quarter for Introduction to Field Research and Conservation, I took the class to the Landels-Hill Big Creek Reserve. Located in the Santa Lucia Mountains south of Big Sur, Big Creek was the fourth of the UCSC Natural Reserves we visited this quarter. The site is rugged and spectacular, and because it's not open to the public we were the only visitors there. There's something truly special about arriving at a campsite after dark (which most of us did) and waking up to find that you've landed in paradise. And realizing that you haven't pitched your tent in poison oak!

Saturday 07 May 2022

We had about a day and a half at Big Creek. Saturday we went on a hike that was much longer and more grueling than the gentle saunter I had promised the students. If I get to teach this class again and return to Big Creek, I now have better plans for how to manage things. We did hike through areas that burned in the Dolan fire in 2020, and were able to see first-hand now the landscape is recovering from that disturbance.

Landscape photo of mountains in background, burned trees in midground, and green vegetation in foreground.
Scorched trees
2022-05-07
© Allison J. Gong

First, some facts about the Dolan Fire. It was started in the Los Padres National Forest in August 2020 by a man who was convicted of arson, throwing rocks at a vehicle, cultivating marijuana on public lands, and 12 counts of animal cruelty; this man, whose name shall go unmentioned here, was sentenced to 24 years in prison just a few days ago. The fire burned over 124,000 acres, cost the state $63 million to fight, destroyed 10 residences and four other structures, and damaged nesting sites for California condors, resulting in the deaths of 12 of the endangered birds. One of the casualties of the fire was the outhouse at the Redwood Camp campground, which is where we were camping. The outhouse had been rebuilt recently and was brand spanking new when we arrived.

Outhouse at Redwood Camp
2022-05-07
© Allison J. Gong

Yes, it's a lovely outhouse, but I really took this photo to show the burnt trees. Redwood Camp is situated alongside Devils Creek, in the redwood forest. The fire came right down to the road and scorched trees along the canyon wall. Many dead trees had to be removed and trails cleared before Big Creek could reopen.

Our hike-that-was-more-than-a-saunter took us up the fire road to Whale Point, where we had spectacular views of the Santa Lucia Mountains in one direction and the Pacific Ocean in the other. Along the fire road our guide showed us fire damage to the redwood forest, and pointed out signs of recovery.

Redwoods are adapted for fire. They have a thick bark that shields the inner living tissue from damage, so long as the fire isn't too hot. The outermost layer of bark is frizzy and burns really fast, so a redwood on fire blazes like a match catching for a few seconds, then goes out. Old redwoods have few, if any, branches near the ground, so a low temperature fire at ground level would cause very little damage to a healthy tree. Fire clears out the underbrush and opens up the canopy, creating an opportunity for some young sapling to reach for the light. Fire suppression, on the other hand, allowed the accumulation of several decades' worth of vegetation, and when the Dolan Fire came through it burned hot and furious.

I knew, of course, that redwood trees are clonal. They sprout new trees from the roots and can eventually form "fairy rings". These occur when a mother tree puts up a ring of clonal offspring. Eventually the mother dies, leaving a ring of trees surrounding either a stump or an open space. We see in the Santa Cruz redwoods all the time.

What I didn't know, but learned at Big Creek, was that redwoods also have epicormic growth, in which new shoots originate from the beneath the bark of the tree, sometimes halfway up the trunk.

Scorched tree trunks with new sprouts growing high above the ground
Redwood trees (Sequoia sempervirens) showing epicormic growth
2022-05-07
© Allison J. Gong

Epicormic buds lie dormant underneath the bark layer, their growth suppressed by hormones released by active shoots higher up in the tree. When those higher shoots are damaged, the cessation of hormones allows the epicormic buds to begin growing. The selective advantage of sprouting new growth halfway up the tree is that the new shoots have less far to grow to reach the sun. With redwoods being so tall, an epicormic bud located halfway up the trunk has a major leg up on the competition trying to grow from ground level.

However, that doesn't mean that many trees damaged by fire don't grow from roots. We saw lots of those, too. Our guide said that post-Dolan some redwoods grew from root sprouts and some from epicormic buds, and that there wasn't really any rhyme or reason as to which trees did which.

Young redwood sprouts, with new growth in bright green
Young redwood (Sequoia sempervirens) sprouts, age 1 year
2022-05-07
© Allison J. Gong

These young trees sprouted in 2021, a few months after the Dolan Fire was extinguished on 31 December 2020. The first year's growth is the dark green color. The new growth added in 2022 is the brighter and paler green. Here's another young tree where the color between the 2021 and 2022 growth is more striking:

Young redwood sprouts, with new growth in bright green
Young redwood (Sequoia sempervirens) sprouts, age 1 year
2022-05-07
© Allison J. Gong

The reward for the hike was a long rest at Whale Point, which we started calling The Top of the World. Because with views like this, who can argue?

25 people standing on a bluff above the ocean
Students listening to our guide at Whale Point
2022-05-07
© Allison J. Gong

Sunday 08 May 2022

After breakfast on Sunday the students packed lunches and dispersed to work on their rapid research projects (RRPs). The RRP is a field exercise in which students devise an entire research project, from initial observations and questions to final presentation, in a few hours. I've found it to be a very effective assignment, because it forces students to simplify and narrow their ideas. They simply can't get too carried away if they have to make a poster and present it to their classmates in half a day. When students are working on RRPs my job is to keep them focused and on-task. Sometimes this is easier said than done. We had students working in the forest, in the creek, and on the beach.

At Big Creek there's a new classroom built down by the beach. No matter where the students did their actual research, we would all meet at the classroom to build and present posters.

Modern building in outdoor setting
Classroom building at Big Creek Natural Reserve
2022-05-08
© Allison J. Gong

It's hard to see in the photo, but to the right of the middle of the building, in the corner of the ell, there's a glass door. Directly across on the opposite side of the building there's another glass door, so you can see all the way through the building. We discovered that this is a problem, as two birds had tried to pass through the building and smacked into the glass. They were both dead. So on the spur of the moment I turned it into an impromptu lesson.

I couldn't ID either bird off the top of my head, so a handful of students and I sat down with the birds and some field guides to study bird anatomy and identification.

6 women sitting cross-legged on a wooden deck, one with an open book on a knee. Two dead birds in the middle of the circle.
Me, trying to ID the dead birds
2022-05-08
© Allison J. Gong

We talked about different types of feathers—primary and secondary flight feathers, coverts, tails—and their functions. After working through descriptions in the field guides I was pretty certain that the larger bird was a Swainson's thrush (Catharus ustulatus) and the little yellow bird was some sort of warbler. It was a good lesson for the students, because we looked at physical descriptions and geographic ranges, and could not come up with a definitive answer. I took several pictures of both and uploaded them to iNaturalist when we got home. We were correct about the brown bird, and the little yellow one ended up being an orange-crowned warbler (Leiothlypis celata).

Two dead birds lying on wooden deck. Bird on top is small and yellow, bird on bottom is larger and brown.
Orange-crowned warbler (Leiothlypis celata, top) and Swainson's thrush (Catharus ustulatus, bottom)
2022-05-08
© Allison J. Gong

The RRPs were the last part of the field trip, and after that we packed up and headed out. The students went straight back up the coast to get home, and saw three California condors from the highway. Alex and I drove back up to Whale Point where it was really windy, just to see condors, and didn't see any. Go figure. At least I had my camera with me and could take real pictures. And it was another beautiful day.

Big Creek Bridge, one of the iconic bridges along Highway 1
2022-05-08
© Allison J. Gong

I am one fortunate woman, because I get to call this work!

1

Big waves breaking on beach, with cliffs on the right side

One of the things that I've been doing with my Ecology class since almost the very beginning is LiMPETS monitoring in the rocky intertidal. Usually we have a classroom training session before meeting in the field to do the actual work. This year we are teaching the class in a hybrid mode, with lecture material being delivered remotely, so we don't have class meetings except for our field trips. The LiMPETS coordinator for the Monterey Bay region, Hannah, and I arranged to meet at our sampling site, where she would do a training session on the beach before we herded everyone out into the intertidal. It truly was a great plan! But the weather intervened and a spring storm blew through, bringing in a big swell. There was a high surf warning for our area the day of our scheduled LiMPETS work. Hannah and I conferred via email and decided that we'd still give it a shot, and at least the students would have an opportunity to learn about the LiMPETS program and practice with the datasheets and gear.

I arrived early to see how the surf was looking, and it was impressive. The waves were regularly covering our sampling location with whitewash, even as the tide was going out. When my co-instructor arrived and I showed him where the transect would lie, it was an easy decision to make to cancel the monitoring. But we would still be able to do the practice stuff, so we convened with Hannah on the bluff and she went into teacher mode.

College students standing in a circle, listening to instructor
Hannah (right) explaining the LiMPETS program
2022-04-22
© Allison J. Gong

We didn't bother with the transect, but had groups of students work through some quadrats out on the intertidal bench, which you can just see in the background of the photo above. Hannah kept everyone out of the danger zone and we stressed the importance of having one member of each group keep an eye on the ocean at all times. We stayed mostly in the high zone, venturing down into the upper mid zone only when the tide was at its lowest. Even then, the big swells would surge up the channels and splash up onto the benches. Nobody got swept off, though, or even more than a teensy bit damp.

Most of the students left after what little work we had for them to do, and that gave me the freedom to poke around on my own and take pictures. I hadn't had a chance to do this in a long time, and intended to make the most of a decent low tide that was almost wiped out by huge swell.

So here we go!

First up, the high-intertidal seaweeds:

Olive-green seaweed on rock, with mussels surrounding
Silvetia compressa
2022-04-22
© Allison J. Gong

And here's a typical high intertidal community at Davenport Landing. Inhabitants include:

  • Several large clumps of rockweed (Silvetia compressa and Fucus distichus)
  • Several smaller bunches of tufty reds (Endocladia muricata)
  • Mussels (Mytilus californianus)
  • Many blotches of "tar spot alga" which is the encrusting tetrasporophyte phase of Mastocarpus papillatus
Clumps of olive-green seaweeds, dark red seaweeds, and mussels on rock
High intertidal community at Davenport Landing
2022-04-22
© Allison J. Gong

The water was pretty murky, so not great for underwater photography. Some of the shots turned out pretty well, though. The soft pale purple structures that you see in the photo below are papullae, used for gas exchange. You can see these only when the star is immersed.

Clumps of pale purple transparent tubes interspersed with white blotches
Aboral surface of the ochre star Pisaster ochraceus, showing papullae and spines
2022-04-22
© Allison J. Gong

The anemones were, as always, happy to be photographed. In this shot, the anemone was being photobombed by a turban snail.

Large green sea anemone and small purple snail in a tidepool
Green anemone (Anthopleura xanthogrammica) and black turban snail (Tegula funebralis)
2022-04-22
© Allison J. Gong

Here's another typical intertidal assemblage:

Clump of sandy tubes with mussels, barnacles, and greenish-purple seaweed
Sandcastle worm (Phragmatopoma californica), iridescent alga (Mazzaella flaccida), gooseneck barnacles (Pollicipes polymerus), and mussels (Mytilus californianus)
2022-04-22
© Allison J. Gong
Gooseneck barnacles (Pollicipes polymerus)
2022-04-22
© Allison J. Gong

A couple of students stayed after the rest of the class had left. They were happy to see the nice fat ochre stars, and so many of them in one small area.

It's always good to see so many big ochre stars. For this species, in the intertidal areas that I visit, sea star wasting syndrome (SSWS) no longer seems to be a problem. Fingers crossed! We'll have to see what unfolds in the next months and years.

1

This weekend, 18-21 February 2022, are the four days of the Great Background Bird Count. This is a global community science project in which people go out and document bird life. The beauty of a project like this is that is available to anyone who has a window to the outside. Of course, anybody can look at birds any time. To participate in the official project, people need to add their observations to eBird, which is similar to iNaturalist only specific to birds.

Day 1

Date/time: Friday 2022-02-18, 09:00-10:00
Location: Younger Lagoon overlook
Weather: Sunny, with very slight overcast; no breeze at first, but light breeze after about 09:30

  • Canada goose (Branta canadensis): 6
  • Mallard (Anas platyrhynchos): 4 female, 4 male
  • Bufflehead (Bucephala albeola): 4 female
  • American wigeon (Mareca americana): 4 female, 5 male
  • American coot (Fulica americana): 12
  • Northern harrier (Circus hudsonius): 1
  • Red-tailed hawk (Buteo jamaicensis): 1
  • Red-winged blackbird (Agelaius phoeniceus): hard to say, but at least 20 lekking away in the field across the lagoon
  • Osprey (Pandion haliaetus), carrying a fish!: 1
  • European starling (Sturnus vulgaris): murmuration of ~100
  • Bewick's wren (Thryomanes bewickii): 1
  • Song sparrow (Melospiza melodia): 2
  • Yellow-rumped warbler (Setophaga coronata): 2 male
  • Anna's hummingbird (Calypte anna): 2 male
  • Bushtit (Psaltriparus minimus): ~15
  • American crow (Corvus brachyrhynchos): 2
  • California quail (Callipepla californica): 1 male
  • California thrasher (Toxostoma redivivum): 1
  • Golden-crowned sparrow (Zonotrichia atricapilla): 1
  • Black phoebe (Sayornis nigricans): 1
  • Spotted towhee (Pipilo maculatus): 1
  • Common yelllowthroat (Geothlypis trichas): 1 male

In addition to this tally of species, which is fine in and of itself but not all that interesting, I did get to see some interactions. The northern harrier is a perennial resident, and I often see it either perched on a fence post across the lagoon or soaring low over the fields. Today the red-tailed hawk was perched on a fence post, and I didn't see the harrier until it flew in several minutes later. The harrier crossed in front of the hawk, flying low, and flushed out a murmuration of starlings. It chased the starlings around for a little while, obviously not hunting them. And as much as I wish starlings hadn't been introduced to North America, the flow of a murmuration is fascinating to watch. Even a small one of about 100 birds is rather impressive. Anyway, the hawk on the fence post watched all this activity for a few minutes and seemed to be rather peeved by all the kerfuffle. It ruffled its feathers and flew off. The harrier flew away later, and the starlings kept up their murmuration until I left.

On this winter solstice, as we anticipate the return of light, I thought I'd write about a different kind of light.

Merriam-Webster defines fluorescence as "luminescence that is caused by the absorption of radiation at one wavelength followed by nearly immediate reradiation usually at a different wavelength and that ceases almost at once when the incident radiation stops". It is a type of luminescence that occurs in both biological and non-biological objects. For example, mushrooms and scorpions are notably fluorescent, as are several minerals. Technically, to qualify as "fluorescent" an object can absorb any wavelength of radiation and re-radiate any other, although the re-radiated wavelength is usually longer than the absorbed wavelength.

We humans, with our three (and occasionally four) color photoreceptor types, can see only the tiny fraction of the electromagnetic spectrum that we call visible light. The visible light range (approximately 400-700nm) is bounded by UV on the short end and infrared on the long end. Other organisms have very different light perception capabilities. We know, for example, that insects can see in UV and pit vipers can see in infrared. And as for mantis shrimps, which have as many as 12 types of photoreceptors, we don't yet understand how they see the world, but you can bet it's nothing like the way we do. For practical purposes, fluorescence is most easily seen when an object absorbs UV light and re-radiates light of a longer wavelength that falls into the visible light range.

When you shine a UV light on one of these fluorescent objects, you see an apparent color change from whatever it looked like under visible light. This color change is most striking in the dark, because the fluorescent object will appear to glow. The same thing happens in daylight, but is obviously more difficult to see.

Here, let me show you. A few weeks ago I went to Natural Bridges to photograph the anemones, first under normal daylight conditions and then under UV light. I have a pretty wimpy UV flashlight, it turns out, but you can still see the fluorescence.

Here's Anemone #1, under daylight:

Sea anemone in daylight
Sunburst anemone #1 (Anthopleura sola) at Natural Bridges
2021-12-07
© Allison J. Gong

And here's Anemone #1 under UV light:

Sea anemone under UV light
Sunburst anemone #1 (Anthopleura sola) at Natural Bridges, under weak UV light
2021-12-07
© Allison J. Gong

Striking difference, isn't it?

This is Anemone #2. It was getting dark by then, but this photo was also taken without flash and I did not increase exposure of the image.

Sea anemone
Sunburst anemone #2 (Anthopleura sola) at Natural Bridges
2021-12-07
© Allison J. Gong

And, under UV light:

Sea anemone under UV light
Sunburst anemone #2 (Anthopleura sola) at Natural Bridges, under weak UV light
2021-12-07
© Allison J. Gong

Here's what's going on. Pigment molecules in the anemones' tissues are absorbing the UV radiation and re-radiating light in the visible range. It's easier to see the fluorescence in Anemone #2 because it was much darker when I took that set of photos. Fluorescence still occurs during the day, but we can't see it as well in the daylight. This is why our local bowling alley does their Atomic Bowling at night! They can dim the overhead lights, crank up the black lights, and let the tunes roll.

Incidentally, if you've ever wondered why so-called black lights are purple, there's a reason for it. A true black light emits only UV light. UV light is invisible to us, hence the term "black", as in pure darkness. UV lights that ordinary folks like us can buy are tinged purple so that we can see it. The purple isn't UV, of course, but seeing the purple light keeps people from looking into the beam and frying their retinas from the actual UV radiation.

Sea anemones, of course, do not celebrate the solstice, but they do perceive it. They, and just about every other living thing, can sense the cyclical changes in day length as the year progresses. After tonight the days will start getting longer as we move through winter and towards spring. Personally, I cannot wait until we get the early morning low tides in the spring.

In the meantime, happy solstice, everyone!

Yesterday I had some time to kill before getting a COVID test, and, as usual, wandered down to the ocean. This time I was at Seacliff State Beach. It was pretty crowded, so I walked onto the pier to see if the fishermen were having any luck. They weren't, really. One man kept catching jack silversides (Atherinopsis californiensis) that were too small to keep. There was a lot of banter about sharks and bait and crabs, but what I witnessed yesterday confirms my hypothesis that a lot of what people call "fishing" is merely an excuse to get outside for a few hours. And there is absolutely nothing wrong with that.

As for me, I have nowhere near enough patience to make a decent fisherman. I did, however keep myself amused by eavesdropping on their conversations and writing snippets in my nature journal. I did also find myself mesmerized by the anchovies. Watch for yourself.

Northern anchovies (Engraulis mordax) at Seacliff State Beach
2021-11-23
© Allison J. Gong

Like sardines, anchovies are planktivorous filter feeders. If you watch the video again and can focus on an individual fish for a while, you'll see that as it swims forward, the front end becomes white and bulbous for a few seconds. That's sunlight reflecting off the fish's jaws. Anchovies have metallic silver coloring, which is a defense against predators. For fish that live in surface waters that are brightly lit, all of those glinting flashes of light make it difficult for a predator to zero in on a single fish to pursue. There is safety in numbers, and for anchovies the silvery coloring combined with schooling behavior means that if a predator manages to catch some of the fish in the baitball, most will avoid being eaten. This works against predators such as larger fish, squid, and birds, which generally capture one or a few fish at a time. But if the predator happens to be a humpback whale, which is capable of engulfing the entire school, then the anchovies are SOL. Think about it, though. For any anchovy, the probability of encountering a larger fish, squid, or bird is much higher than encountering a humpback or blue whale. Thus the selective advantage of schooling!

Okay, now back to the feeding. Anchovies have really long jaws for their size and can, like snakes, open their mouths very wide. This allows them to filter as much water as possible as they swim. Food, mostly plankton, is caught on the gill rakers, which are bony or cartilaginous structures projecting forward (i.e., towards the mouth) from the gill arches. Some fishes' gill rakers are nothing more than short nubs. Filter feeding fishes such as anchovies have long thin gill rakers. Water enters the mouth as the fish swims forward, and plankton is caught on the array of gill rakers. The water then passes over the gill filaments, where respiratory exchange occurs, and then out from underneath the operculum. Anchovies cannot suck water into their mouths, and thus can feed only while swimming forward, or ramming water into the mouth. This is a type of feeding called ram feeding.

These anchovies were very close to shore. They were feeding, so obviously there was plankton in the water. I haven't done a plankton tow in a while, as I generally assume that fall/winter plankton isn't as interesting as spring/summer plankton. However, given the presence of feeding anchovies inshore, it might be time to test that assumption.

I go to Natural Bridges quite often, to play in and study the rocky intertidal. But at this time of year, before the low tides really get useful, there is another reason to visit Natural Bridges—to see the monarch butterflies (Danaus plexippus). Natural Bridges State Park is a butterfly sanctuary, providing a safe overwintering spot for migrating monarchs.

Yesterday morning, while it was still cool enough for the butterflies to be hanging in clusters, I went out and photographed them. Last year's count was only 550 for the winter, but I'd heard that there were more butterflies this year and it was definitely worthwhile going out and looking for them.

Monarch butterflies clustered in eucalyptus tree
Monarch butterflies (Danaus plexippus) at Natural Bridges State Park
2021-11-06
© Allison J. Gong

The butterflies rest with their wings up, so when they are hanging like this you see the duller underside of the wings. A few of them were starting to warm up their flight muscles and showing off the more brilliant orange of the dorsal wing surface.

Monarch butterflies clustered in eucalyptus tree
Monarch butterflies (Danaus plexippus) at Natural Bridges State Park
2021-11-06
© Allison J. Gong
Monarch butterflies clustered in eucalyptus tree
Monarch butterflies (Danaus plexippus) at Natural Bridges State Park
2021-11-06
© Allison J. Gong

I am really not good at counting things like this, but my guess is that there were hundreds of butterflies, all told. Based on the 2020 season, when I didn't see any monarchs at all at my house and only a few scattered individuals at Natural Bridges, this year's population seems to be doing much better. 2020 was an awful year in California in general, and in the Santa Cruz region in particular. The CZU August Lightning Complex fire put air quality into the unhealthy-for-everybody range for several weeks. Much of the rest of the western U.S. also burned, with much habitat loss for nature. Maybe that's part of why there were so few monarchs last winter in Santa Cruz. Of course, the monarchs' populations have been declining for years, so last year's population crash may be only a dip in the grand scheme of things.

Whatever the cause, it really was good to see even this many butterflies at Natural Bridges.

Oh, and before starting my butterfly hunt in earnest, I spent about an hour watching and listening for birds. I wanted to get the birdwatching in before human activity drowned out the birdsong. Unfortunately, most of what there was to hear was the cawing of crows.

Nature journal page of birds seen and heard
Page from my nature journal

Next time I'm at Natural Bridges, I'll try to remember to check in with the visitor center to see what the official count for monarchs is. Fingers crossed the number is a lot higher than 550!

Over the weekend the atmospheric river slammed into Northern California and settled over us for a few days. Our weather station at home, roughly at sea level, measured 4.5 inches of rain. On Sunday afternoon it was extremely windy, and I think the rain wasn't falling vertically enough to be captured by the rain gauge, and my guess is that another half-inch or so fell but wasn't measured. A total of about 5 inches of rain feels right.

This storm was a very big deal for us, for a couple of reasons. The most obvious is that California is in the midst of another severe drought. There wasn't much rain or snowfall at all in the 2020-2021 rain season, reservoirs are drier than I remember seeing them, and the governor has asked residents to reduce water consumption statewide by 15%. We are woefully short of that conservation mark. So yeah, the amount of water available to all consumers is (or should be) of concern to all of us.

A second reason why we all paid so much attention to this storm was the fact that much of the rain was forecast to fall on areas that had burnt recently, including the 2020 CZU Lightning Complex fire burn scar. Both the 2020 and 2021 fire seasons were horrendous, leaving many acres of previously forested land bare and prone to mudslides, or "debris flows" in modern parlance. Residents in the Santa Cruz Mountains were warned to prepare for evacuation, just in case. And everyone was prepared to deal with power outages, which, oddly enough, didn't happen.

On Friday the 22nd, before the major storm blew in, I went to Younger Lagoon to record some video clips for my Marine Biology class. One smaller storm had already blown through and it was very windy. I encountered two birders who were looking for pelagic birds that had been swept into the lagoon or were seeking shelter from the elements.

This is what the lagoon looked like on Friday:

North end of Younger Lagoon
Younger Lagoon
2021-10-22
© Allison J. Gong

In fact, here's the video I put together for the students:

So that was Friday. On Saturday we went hiking at Moore Creek Preserve with our god-daughter and family. We all wanted some quality outdoors time before the major storm event on Sunday/Monday.

Yesterday (Monday) I went back to Younger Lagoon to see how much it had changed with all the rainfall. I could tell from the smell that the sand berm hadn't been breached yet. We can always tell when the lagoon breaks through, because all of the hydrogen sulfide buried in the sediment gets into the air. It's a smell that, once known, is difficult to forget. Anyway, I took a photo of the top of the lagoon from the same spot as on Friday. And see how much difference one big rain event can make:

Younger Lagoon
2021-10-25
© Allison J. Gong

To make the comparison easier, let's look at those photos side-by-side:

We had a high surf advisory yesterday, so I wandered down into Younger Lagoon to check out the ocean conditions. I could hear that the surf was really big. It was still windy, too.

Just to make sure my intuition was correct, I stopped to check out the sand berm. And yes, it was still there.

Sand berm between the Pacific Ocean and Younger Lagoon
2021-10-25
© Allison J. Gong

The waves were big and the sets were coming in fast. I shot this video at about low tide yesterday morning. We're in neap tides right now so the low wasn't very low.

High surf advisory at Younger Lagoon
2021-10-25
© Allison J. Gong

Storms and tidal surge, when combined, can wreak havoc on nearshore coastal habitats. One of the obvious victims of the recent violence is the kelp bed. The kelps have been on their seasonal decline for weeks now, and the storm-strengthened swell tore up a lot of kelp and deposited it on the beach. Thousands of detached pneumatocysts (floats) of Macrocystis pyrifera had been blown into windrows. The lighter colored pneumatocysts are the ones that were washed up earlier, probably in the second-most-recent high tide; the darker ones were deposited during the most recent high tide, about six hours earlier.

Kelp debris, mostly Macrocystis pyrifera, on the beach at Younger Lagoon
2021-10-25
© Allison J. Gong

I expected to see dead animals on the beach, too, and was surprised that there weren't any carcasses in sight. Then I looked across the beach with binoculars and saw a couple of turkey vultures (Cathartes aura) on the sand, and a third on the fence above. Vultures eat carrion, so there must be a corpse over there after all. Sure enough, there was a dead bird. As I approached I saw a black body with a smaller reddish part, and my first thought was, "Are turkey vultures cannibals? Will they eat their own dead?" because turkey vultures have unfeathered red heads. But when I got closer I could see that this corpse had webbed feet. It was, in fact, a cormorant.

Dead cormorant at Younger Lagoon
2021-10-25
© Allison J. Gong

The scavenging turkey vultures flew away as I approached. I didn't want to interrupt their brunch any longer than necessary, so stuck around just long enough to snap a few photos. By the time I had crossed back to the near side of the beach, they had returned to their feeding.

All told, this storm was a good start to the rain season. It put an end to the fire season, which is a huge relief to all of us living in California. We have a long way to go to return to normal rain levels, whatever they are in this era of anthropogenic climate change, and it irks me to hear people saying that we've had a lot of rain now, so the drought must be over. Too bad it doesn't work that way, or we would all be rejoicing big time.

Climate change models predict, among other things, oscillation between extreme rain events and extreme drought in California. Just in the past handful of years we've had drought plus the Blob (2015), a wet winter in 2016-2017, and a return to dry conditions from 2018-2020. And we all remember the extreme fire seasons of 2020 and 2021. So what is "normal" these days? I think it's impossible to know. We are experiencing climate change as it happens, and we don't know how or when things will begin to stabilize. I suspect it won't be within the lifetime of anyone reading this blog.

Still, after having about zilch in the way of rain last year, it's good to see that Mother Nature can still throw an atmospheric river at us. Fingers crossed for more rain as the season continues.

Over the past couple of weeks I've rented two super telephoto lenses, to see what all the hype was about. I mean, do I really need 500 or 600mm of reach? I had read up on the specs of such lenses, and one major drawback is the weight—1900 grams or more. Would I be willing to lug a beast like this around, and would I be able to use it effectively? You never know until you try, so I rented them. And, of course, it was foggy both weeks so I didn't have much opportunity to take decent photos. But since the entire point of renting the lenses was to see if I could use them at all, that was fine.

As part of the test-drive for the second lens, I went up to Waddell Beach to see if there would be any birds to photograph. It is migration season, and our winter residents will be arriving soon. Some of them, such as the red-necked phalarope, have shown up at Younger Lagoon over the past four weeks or so. It was really foggy at Waddell, remember, and I didn't have much hope of seeing anything remarkable. There were some gulls and whimbrels off in the distance. But it turned out that the stars of the show were blackbirds!

They were hard to miss, because there were 50-60 of them and they were hopping up and down like jumping beans.

This is a mixed flock of Brewer's blackbirds (Euphagus cyanocephalus) and red-winged blackbirds (Agelaius phoenicius). The glossy greenish-black birds are the male Brewer's blackbirds, and most of the brownish birds are female Brewer's blackbirds. Since both sexes were doing the hopping, I didn't think this behavior had to do with courtship or mating.

So yes, while most of the birds seemed to be Brewer's blackbirds, I did hear the liquid gurgling of the red-winged blackbird's song coming from somewhere in the flock. When I got home and looked at the photos on the big monitor, I did see some red-winged blackbirds. Here's a male, surrounded by other males red-wingeds and both female and male Brewer's blackbirds.

Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
2021-09-14
© Allison J. Gong

In this photo above the black birds are male Brewer's blackbirds. The brown birds without faint wing bars are female Brewer's blackbirds, and the brown birds with the wing bars are male red-wingeds. There were no female red-winged blackbirds in any of my photos. According to an article from Cornell's Bird Academy, the males spend the weeks leading up to springtime competing for territories, and when the females return from their winter migration they will choose mates based partly on the quality of the territory. Mid-September is too early for this kind of competition, though. We are just about up to the autumn equinox, but not near winter quite yet.

Back to the hopping. There's a clue in this photo about what I think was going on:

Male Brewer's blackbird (Euphagus cyanocephalus) at Waddell Beach
2021-09-14
© Allison J. Gong

See that little fly? There were many such flies, most of which were lower on the beach gathering around the kelps and other wet detritus that had washed up. There were fewer flies up where the driftwood accumulates, though. Once again, it wasn't until I saw the pictures on my big monitor that I could figure out what those blackbirds were doing. They were hopping up to eat flies!

Here's a series of shots showing one of the male red-wingeds in mid-hop.

  • Looking up, just before the hop:
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
2021-09-14
© Allison J. Gong
  • Up he goes! See the very edge of the red epaulette on his right wing? And all those flies?
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
2021-09-14
© Allison J. Gong
  • Is he going to catch something?
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
2021-09-14
© Allison J. Gong
  • Maybe?
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
2021-09-14
© Allison J. Gong
  • After all that, I'm not at all sure if he actually got anything!
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
2021-09-14
© Allison J. Gong

I don't have any hard evidence that the blackbirds (both Brewer's and red-wingeds) are catching flies. And while I was at the beach watching them hopping up and down I had no idea what they were doing. However, now that I've seen the flies in the photos, it makes sense that the birds would be hopping up to catch and eat them, especially since both sexes of the Brewer's blackbirds were doing the same thing.

So that's what was hoppening at the beach!

1

One year ago today a lightning storm settled over the Santa Cruz Mountains and dry lightning ignited a bunch of wildfires. Given the drier-than-normal conditions at the time the fires took off like crazy and eventually merged into one megablaze that CalFire dubbed the CZU Lightning Complex fire. The CZU Lightning Complex fire burned over 80,000 acres in Santa Cruz and San Mateo Counties before being contained by CalFire on 22 September. It raged through Big Basin Redwood State Park and destroyed the buildings at the park headquarters up in the mountains. Several mountain communities were threatened, with over 1400 structures destroyed. I personally know two families whose homes were lost, and many others who evacuated. We were also ready to evacuate, with bags packed and a place to flee to.

To commemorate the first anniversary of the CZU Lightning Complex fire the Santa Cruz Museum of Natural History and the Santa Cruz Public Library put together a series of events called "CZU and You" to teach the public about this particular natural disaster. This past weekend we attended a walk through Rancho del Oso, led by Richard Fletcher, who is one of the California State Parks interpretive rangers. Rancho del Oso sits in a little valley that I think of as the "bottom" of Big Basin Redwood State Park. It ends at Highway 1 directly opposite Waddell Beach. In previous years I have taken my Ecology class to Rancho del Oso for the first field trip of the semester. Rancho del Oso was cleared to reopen for visitors on weekends only just a few weeks ago.

My nature journal entry
2021-08-14
© Allison J. Gong

The Nature and History Center at Rancho del Oso is housed in the building that was the residence of Hulda Hoover McLean, who was the niece of President Herbert Hoover. Hulda and her husband, Charles, raised a family in the Rancho; Hulda taught her children about the natural history of the area. She sold her 40 acres of land and her home to the Sempervirens Fund in 1985, with the intent to create a place where people could visit and learn about this part of the natural world. There was one ranger on site on August 16, 2020 when dry lightning ignited the fire on the hillside directly across Waddell Creek from the nature center. He managed to flag down a single fire truck and crew. Working through the night this handful of people built a backfire to burn up the hill towards the flames that had sped around the house and were approaching from the other side, and sweeping off the burning embers that landed on the roof

The first things that Ranger Fletcher showed us were some cones from Monterey pine (Pinus radiata) trees. He described this species is being moderately serotinous, meaning that seeds don't fall out of the cones until they are exposed to the heat of a fire. Heat dries and opens up the cones, allowing the seeds to fall and be dispersed.

In the area this backfire burned, literally across the driveway from the nature center, we could see some of the fire followers. These are the first plants to show up after a fire. Some of them may have arrived by seed, but many are regrowth from underground roots or bulbs.

The naked lady lilies (Amaryllis belladonna) are non-native ornamental bulbs that have been planted in gardens all over the region. They are called naked ladies because their leaves die back completely before the stalk blooms in late summer; you can see all the brown leaves at the bases of the flower spikes. In this first bloom season after the fire they seem more vibrantly pink than usual. The other foliage in the foreground is a blackberry (Rubus sp.) that could be either native or not. In the background you can see some bracken fern (Pteridium sp.).

Naked ladies (Amaryllis belladonna) in burned area at Rancho del Oso
2021-08-14
© Allison J. Gong

After a disturbance such as a fire the process of ecological succession is reset. Given the European colonizers' habit of suppressing all fire, it had been at least 100 years since the Waddell Valley burnt. In the many decades since the previous fire the homesteaders and ranchers had planted all sorts of non-native ornamental plants in their gardens. The naked ladies and invasive blackberries are examples of plants that are well suited for our Mediterranean climate, and they certainly made a showy return after the CZU Lightning Complex fire.

Fortunately it's not just the non-natives that are coming back. The ranger was excited to point out that one yellow bush lupine (Lupinus arboreus) had popped up on this same slope. Lupines are good plants to have on burnt slopes because they help stabilize the soil. They are also nitrogen fixers, which makes the soil more hospitable to other, hopefully native, plants.

Bush lupine (Lupinus arboreus), bracken fern (Pteridium sp.) and naked ladies (Amaryllis belladonna) in burned area at Rancho del Oso
2021-08-14
© Allison J. Gong

One plant that I hadn't expected to see in this location is Equisetum, the horsetail. There is a lot of Equisetum along the Marsh Trail, and I associated this plant with wetlands. So why was it growing on this particular slope, which is measurably drier than the Marsh Trail? It was growing really well, too!

Equisetum in burned area at Rancho del Oso
2021-08-14
© Allison J. Gong

And see how lush it is growing along the Marsh Trail?

Equisetum along Marsh Trail at Rancho del Oso
2021-08-14
© Allison J. Gong

We hiked the Marsh Trail—how could there be so many mosquitos when we're in such a bad drought??—and crossed Waddell Creek to where the Skyline to the Sea trail ends (or begins, if you were to start at the beach and hike uphill). This is where Ranger Fletcher told us more about the fire itself and its ongoing effects.

We were hiking at Rancho del Oso on a foggy morning. It was so very different last year, when the marine layer abandoned us early in the summer and left us to dry out just in time for the dry lightning in mid-August. But this is the area where the first lightning strikes hit ground:

Hillside northwest of Waddell Creek, where the Waddell fire began
2021-08-14
© Allison J. Gong

Once the fire was extinguished this hill was covered with black, burnt vegetation. Anything green is vegetation that has grown since then.

CalFire declared the CZU Lightning Complex fire contained on 22 September 2020 and controlled on 23 December. What nobody knew at the time was that the fire remained burning underground. Considering their great height, redwood trees don't have deep roots. But they have lateral networks of roots that entwine with those of neighboring trees (which are likely to be clonemates) and form a more or less solid mesh that holds all of the trees up. The fire travelled along this root network and continues to burn. One of our group asked "What is there to burn, if the roots have already burnt?" and Ranger Fletcher explained that now there are tons of charcoal buried in the ground, and we all know how well charcoal burns, right? Not being able to detect where roots are burning underground means it's difficult to evaluate trails and know when they are safe. Just last week a ranger was working up at Big Basin and stepped into what turned out to be a cavern containing burning embers. CalFire estimates that the fire will continue to burn underground for another four years. Trees that were weakened or killed by the fire will also be falling. It will be several years before the Skyline to the Sea trail opens again. But in the lifespan of a redwood forest, five or even ten years would be a blink of the eye. And I'd just as soon not step into a burning hole while hiking, thank you very much.

On this side of Waddell Creek you can see the meadow that acts as a buffer zone between the mountains and the ocean. When wildfires burn through hilly areas, we worry about winter rains causing mudslides. This past winter we got hardly any rain at all, so at least the mudslides didn't materialize. But even when there aren't mudslides, a lot of nutrients wash downhill towards the ocean. The meadow is a biological sponge that soaks up these nutrients and keeps them from creating problems in the marine habitat. This is one of the reasons that wetlands are such important players in the health of coastal ecosystems. I took this photo from the Highway 1 bridge that crosses Waddell Creek. Just on the other side of the highway the creek spills onto Waddell Beach.

Waddell Creek and flanking wetlands
2021-08-14
© Allison J. Gong

From a fire behavior perspective the CZU Lightning Complex fire was unusual. Fires usually burn up hills, but this one burned downhill towards the ocean. Waddell Beach is almost always foggy, and the marine layer can be felt away from the beach, as it was on our most recent visit to Rancho del Oso. This marine influence should have acted to keep the fire from racing downhill as fast as it did. Alas, the marine layer was not doing its job last summer. If it had been, we wouldn't have seen so many lightning strikes in the first place. The paucity of rain from the previous winter didn't help things, either. Climate change is coming back to bite us in the ass. Around the world we are seeing extreme weather events, from severe drought to equally devastating floods to heat records tumbling by the wayside. We are living in the era of anthropogenic climate change, and we will not be alive when an equilibrium returns to Earth's climate. In the timeframe of a human lifespan, however, it is nice to see and document how this small part of the landscape is recovering from last year's fires. Now that Rancho del Oso is open again I'll try to get up there every so often to record changes in my nature journal.

%d bloggers like this: