Skip to content

This past Monday I did something rare for me: I returned to the same intertidal site I had visited the previous day. I enjoyed myself so much the first time that I wasn't able to refuse an invitation to go out there again. The site, Pigeon Point, is one of my favorites, especially in all of its spring glory as it is now. It has always been a hotspot especially for macroalgal diversity, and so far this year appears to be living up to its reputation. The day before I collected several reds that I got to spend the next two days trying to identify.

Three intertidal gastropods at Pigeon Point. Top circular object: Thylacodes squamigerus; yellow elongated object in middle: Doriopsilla albopunctata; bottom purplish-black snail: Tegula funebralis.
1 May 2017
© Allison J. Gong

On Monday I was less overwhelmed by obsessed with algae and able to focus more on the animals, and was delighted to find a small cluster of Thylacodes squamigerus, the strange and fascinating vermetid snail. Nearby one of the vermetid snails was a yellow nudibranch (Doriopsilla albopunctata) and one of the common turban snails (Tegula funebralis). The chance proximity of three different gastropods brought to mind the incredible diversity of this group of molluscs.

The Gastropoda are the largest group within the phylum Mollusca, and can claim a fossil record that dates back to the early Cambrian, some 540 million years ago. They have been extremely successful throughout that long time and are the only molluscan group to have established lineages in both freshwater and on land (of the other molluscs, only the bivalves have made it into freshwater, with the remaining groups restricted to the sea). As you might expect, this evolutionary history has given rise to a mind-boggling array of body types and lifestyles. Let's investigate this diversity by taking a closer look at the three gastropods in the photo above.

Gastropod #1 (Thylacodes squamigerus): Very few people, on seeing this animal for the first time, would guess that it's a snail. Most would say that it's a serpulid worm. The tube is calcareous, as it is for serpulid worms, and winds around over rocks in the intertidal.

Tube of the vermetid snail Thylacodes squamigerus at Pigeon Point
1 May 2017
© Allison J. Gong

A close look at the opening of the tube, however, reveals snail-like rather than worm-like features. Thylacodes even has a snail's face, although I'll admit it isn't easy to see if you don't know to look for it. And despite crawling under a ledge with my camera, I didn't get the best view of a face. In this photo, however, you can at least see one of the cephalic tentacles:

View into the tube of Thylacodes squamigerus at Pigeon Point
1 May 2017
© Allison J. Gong

Living in a tube cemented onto a rock means that Thylacodes can't go out and find food. It must instead catch food and bring it in. Thylacodes does so by spinning threads of sticky mucus that are splayed out into the water, where they capture plankton and suspended detritus. The threads are then reeled in and everything--mucus and food--is eaten by the snail. Thylacodes tends to occur in groups, and individuals within an aggregation contribute threads to a communal feeding net, which presumably can catch more food than the sum total of all the snails' individual efforts.

Pretty unexpected for a snail, isn't it?

Gastropod #2 (Tegula funebralis): The black turban snail is probably one of the most common and commonly overlooked animals in the intertidal. People don't see them because these snails are, literally, everywhere from the high- down into the mid-intertidal. They are routinely stepped over as visitors rush to the lower intertidal, and ignored again as these same visitors leave the seashore. I love them. I keep them in the lab as portable lawnmowers for the seawater tables. They are incredibly efficient grazers, keeping the algal growth down. Plus, I think they're cute!

If there's such thing as a 'typical' marine snail, T. funebralis may very well be it. This little snail exemplifies several of the traits we use to define the Gastropoda: it lives in a coiled shell, it uses a radula for scraping algal film off rocks (yum!) and is torted. The shell is easy enough to understand, as everyone has seen a snail at some point, even if it was a terrestrial snail. The radula and torsion, however, may take a little explaining.

A congregation of Tegula funebralis at Mitchell's Cove
8 June 2016
© Allison J. Gong

Many molluscs have a radula, a file-like ribbon of teeth that can be stuck out of the mouth and used for feeding. In gastropods the radula can be a scraping organ (as in Tegula and other herbivores such as limpets), a drill (as in the predatory moon snails, which drill holes into unsuspecting clams and then slurp out their soft gooey bodies), or a poison dart (as in the venomous cone snails). The radula of a grazer such as Tegula bears many transverse rows of sharp teeth, which are regularly replaced in a conveyor belt fashion as they are worn down. This assures that the teeth being used are always nice and sharp. Remember the radula marks made by the owl limpet (Lottia gigantea)?

An owl limpet (L. gigantea) in her farm at Natural Bridges
7 March 2017
© Allison J. Gong
Tegula funebralis clearing real estate in my seawater table
27 January 2017
© Allison J. Gong

Those zig-zaggy marks are made by the scraping of the radula as the limpet crawls over her farm. Tegula funebralis makes the same type of pattern in my seawater tables. All of that white territory is area that had been scraped clean of algae in about a day. Tegula is a very industrious little snail! And they're not shy, either. I don't have to wait a day or so for them to get acclimated when I bring the back to the lab. I can move them around from table to table and after a few seconds they poke their heads out and start cruising around. I've learned from watching them over the years that they seem to have an entrained response to the rising and falling of the tides, even after I bring them into the lab. For the first few weeks of captivity, every morning when I first get to the lab I find that several Tegula have climbed up the walls. I think they're crawling up when the tide is high. I really should look at that more carefully. They never go too far, but sometimes they do drop onto the floor and I find them by stepping on them. Fortunately they are hardy creatures and the floor is always wet with seawater so as long as I find them within a day and plunk them back into the table they're fine.

Now on to torsion. Torsion is difficult to explain, but let me try. The word 'torsion' refers to the twisting of the nerve cord and some internal organs that occurs during larval development of gastropods. Here's how it works. Imagine a closed loop, like a long piece of string with the ends tied together. Lay the loop down on a table and it is just a simple loop. Pick up one end of the loop, twist it counterclockwise 180°, and lay it down again. Now you have a figure-8, right? That's not exactly what happens in the living snail, but you get the picture.

Tegula and other snails have an elongated body that is coiled and crammed to fit inside the shell. If you could take Tegula's body and stretch it out without breaking it (impossible to do, BTW), you'd see the figure-8 configuration of the nerve cord. Other internal organs are re-arranged by torsion, too. As a result, both the gill(s) and the anus now open into the mantle cavity which has been relocated over the head. This arrangement is ideal for keeping the gill(s) irrigated, but not so good for hygienic reasons. Fortunately, the mantle cavity itself is angled so that water flows through it in a more-or-less unidirectional manner, passing over the gill before the anus. Tegula and other marine snails undergo torsion while in the larval stage, and remain torted as adults. This is not the case in other gastropods, as we'll see next.

Gastropod #3 (Doriopsilla albopunctata): Everybody loves the nudibranchs, because their brilliant colors make them easy to love. Unlike the oft-undetected Thylacodes squamigerus and the ignored Tegula funebralis, many of the nudibranchs are somewhat easy to spot in the field because of their flamboyance. This is a crappy picture, but you get the point.

Doriopsilla albopunctata at Point Piños
9 May 2015
© Allison J. Gong

Doriopsilla albopunctata is one of several species of yellow dorid nudibranchs lumped together under the common name 'sea lemon'. Instead of the long fingerlike processes (cerata) that adorn the backs of the aeolid nudibranchs such as Hermissenda spp., the dorids have smooth or papillated backs that may be decorated with rings or spots. Dorids also have a set of branchial plumes on the posterior end of the dorsum; the number and color of these gills can often be used to distinguish similar species. Doriopsilla albopunctata has a smooth yellow back with little white spots, hence the species epithet (L: 'albopunctata' = 'white pointed'), and white branchial plumes.

Doriopsilla albopunctata at Franklin Point
17 July 2015
© Allison J. Gong

Nudibranchs are gastropods, although in a different group from Thylacodes and Tegula. The marine slugs, of which the nudibranchs are the most commonly encountered, are in a group called the Opisthobranchia, whose name means 'gill on back' and refers equally to the cerata of aeolids and the branchial plume of dorids. In fact, these animals lack the typical molluscan gill that the snails have. They do have a radula, however, and crawl around on a single foot exactly like Tegula does.

An adult nudibranch's body is elongated, unlike the coiled body of Tegula, and has no apparent signs of having undergone torsion. However, examination of larval nudibranchs shows that they do undergo torsion just like any other respectable gastropod. The weird thing is that some time during the transition from pelagic larva to benthic juvenile they de-tort, or untwist their innards so that their internal anatomy matches their external shape. Instead of having to poop on their own heads, nudibranchs have an anus that is sensibly located at the rear (no pun intended) of the body.

Torsion is one of those biological curiosities whose evolutionary origin is shrouded in mystery. How did such anatomical contortions evolve? Why do gastropods, and only gastropods, undergo torsion? And why do some gastropods tort as larvae, only to detort as they become adults? There are scientific hypotheses about the benefits of torsion, particularly to the larval stages, but nobody knows for sure. After all, none of use were there to watch when it happened.

This is just a tiny taste of the diversity of the Gastropoda. I think it's cool to see three such different gastropods in a small spot of the intertidal. And no doubt there were more that I didn't see. That's one of the joys of working in the intertidal: that I so often see things I wasn't even trying to find.


Before Christmas I was invited to speak at one of the monthly public talks hosted by the Seymour Marine Discovery Center. I'm always happy to be asked to speak to students or the public, so my default answer to these requests is "Yes!" Usually for this kind of presentation I get to choose the topic, but this time my name came up because one of the Seymour Center staffers came up with "bees, banana slugs, and bat stars" so that's what I was given to work with. When my brain took hold of this topic and these very disparate animals, the common theme that came to mind was . . . wait for it . . . reproduction. So yes, this is going to be another sex talk.

What this means is that I need to provide some information on the talk and photos so that the Seymour Center can start publicizing the event, which is in March. Banana slugs are still in the mix, and I don't have any pictures of them, so this afternoon I took advantage of a break between storms to go hiking in the forest and look for slugs. I'd been feeling a little cabin fever for the past few days because of the rain and my own recovery from bronchitis which sapped all of my energy, so I was grateful for an excuse to leave my desk and get outside for a bit.

I headed out to the Forest of Nisene Marks State Park, knowing that where there are redwood trees there should also be banana slugs, especially after all the rain we've had recently. You know how when you're looking for something you can't find it, and when you're not looking for it you see them all over the place? That's how this hike began. It turns out that looking for banana slugs under a deadline makes them very hard to find. And I did have a deadline, as I'd promised to have the blurb and photos for my talk ready today.

After about half an hour of slowly meandering along the trails and getting distracted by all the fungi that popped up after the rains, I did see a banana slug:

Banana slug (Ariolimax sp.) at The Forest of Nisene Marks State Park. 7 January 2016 © Allison J. Gong
Banana slug (Ariolimax sp.) at The Forest of Nisene Marks State Park.
7 January 2016
© Allison J. Gong

That is such a gastropod face! Banana slugs are really cool (and ectothermic, too) animals. One of my buddies in grad school kept one for a pet in our office bullpen; we called it Terry, because slugs are hermaphrodites and deserve androgynous names. Terry really liked eating mushrooms and lettuce.

Banana slugs, and all of the terrestrial snails and slugs, are pulmonate ("lung") gastropods. Most of their marine relatives, with whom I spend so much quality time in the lab and in the field, are prosobranch ("gill in front") gastropods. The nudibranchs and sea hares, which are so photogenic and conspicuous, are opisthobranch ("gill on back") gastropods. As these names imply, the prosobranchs and opisthobranchs possess gills (although they are very different kinds of gills) and thus live in water. The pulmonates don't have gills; they live on land and breathe air. [There are aquatic pulmonates, too. Only a few are marine, and most live in fresh water. They have to come to the surface to breathe.]

So, what is the lung of a banana slug? It's actually the mantle cavity, that oh-so-molluscan feature, that in prosobranchs contains the gill(s). In the pulmonates, the mantle cavity is highly vascularized, as you'd expect from any gas-exchange surface, and opens to the outside by a hole called a pneumostome.

Here's the pneumostome of my first banana slug of the afternoon:

Anterior region of a banana slug (Ariolimax sp.), showing the pneumostome on the right side of the mantle. 7 January 2016 © Allison J. Gong
Anterior region of a banana slug (Ariolimax sp.), showing the pneumostome on the right side of the mantle.
7 January 2016
© Allison J. Gong

The pneumostome is always on the right side of the animal's mantle. You can actually watch it open and close as the slug breathes.

I found a second slug about an hour into the hike.

Banana slug (Ariolimax sp.) at The Forest of Nisene Marks State Park. 7 January 2016 © Allison J. Gong
Banana slug (Ariolimax sp.) at The Forest of Nisene Marks State Park.
7 January 2016
© Allison J. Gong

See? No pneumostome on the left side.

If I'd had the time, I would have put the slugs together to see if they'd mate. It is a sex talk I'm prepping for, after all. Heck, what would be even better would be to find two slugs already in copulo. No such luck today, though. What's good about not finding everything that I was looking for today is that it gives me incentive to keep going out to search for it. And in the meantime, I've got to start studying up on local fungi. I saw so many different kinds of mushrooms today that now I'm motivated to fill in this particular gap in my knowledge. Might as well take advantage of the El Niño rains, right?

That cute little Melibe I found last week is still alive, and still super cute. It lost one of the two large cerata on its back the second day I had it, and I wasn't sure it would be able to survive long without it, but it has hung in there and started growing a replacement. This afternoon it was crawling on the underside of the surface tension in the bowl:

Melibe leonina crawling on underside of surface tension. 2 October 2015 © Allison J. Gong
Melibe leonina crawling on underside of surface tension.
2 October 2015
© Allison J. Gong

It is extremely difficult photographing transparent animals; this is the best shot I got. You are looking at the animal's ventral surfaces. It is using its elongate foot to stick to the surface, and the rest of the body is suspended from the foot. The oral hood is wide open and you can see the little blue spots at the base of each tentacle.

The best news is that the tiny Melibe has learned how to eat! The first couple of days I offered it live brine shrimp nauplii, and the Melibe didn't seem to like the thrashing of the nauplii. It cowered and shrank instead of trying to eat them. Then it occurred to me to mush up the nauplii first, so they wouldn't be so active. I also thought that the Melibe might be able to eat the mush itself. Aha, success! Except that I wasn't able to capture any video or photos then.

Today, though, the Melibe did this, while I had the camera all set up and ready to go:

Instead of cringing from the nauplii, today the Melibe was actively going after them. In this video it encloses its oral hood around a handful of nauplii and collapses the hood, forcing the nauplii into its mouth. You can actually see the nauplii stop struggling as they are ingested.

I think the Melibe is growing, too. I'll have time to measure it on Monday.

This morning I was doing some routine cleaning of animal-containing dishes at the marine lab when I noticed a little blob of snot on the outside of the bowl I was working on. Normally I just wipe off blobs like that, but something about this one caught my attention in a different way and I paused to take a closer look at it. What I saw made me glad I hadn't given it the old Kim-Wipe™ treatment.

It was this:

Very small juvenile nudibranch (Melibe leonina). 23 September 2015 © Allison J. Gong
Very small juvenile nudibranch (Melibe leonina).
23 September 2015
© Allison J. Gong

This little 3mm blob of cuteness is the tiniest Melibe I've ever seen. Melibe is one of my favorite creatures of all time. It's an entertaining animal that has unfathomable amounts of charm. Unlike most other nudibranchs, which prey on other animals (typically cnidarians, sponges, or bryozoans), Melibe is a filter feeder. It sweeps its large oral hood, visible to the right, through the water to capture plankton. The flat large-ish structures projecting from the animal's back like wings are cerata, of which there will eventually 4-5 pairs when the slug reaches adult size. The cerata function as gas exchange surfaces; they also contain extensions of the digestive system. When a Melibe is mishandled or stressed, it drops cerata, which can then be regenerated.

Melibe is the most animated of slugs. I dropped a few brine shrimp nauplii on this little guy to see if it would be able to catch them. Unfortunately it looked more like the nauplii were ganging up on the Melibe than the other way around. However, I know from experience that even larger Melibe take a while to figure out how to eat brine shrimp.

But isn't that the cutest slug you've ever seen? It has tiny bright blue dots on its body! Those two little flaps on the top surface of the oral hood are rhinophores. I know they look like ears, but they are chemosensory rather than auditory organs.

And look how fast this little nudibranch can crawl! Remember, it's only 3mm long, and it's making pretty good progress getting to the corner of the bowl.

When dislodged from whatever it's crawling on, Melibe can swim. I thought this one would attach itself to the underside of the surface tension, as they often do, but it thrashed for quite a while before sort of accidentally finding the bottom of the dish again.

And do you know what the best thing about Melibe is? It smells like watermelon. I kid you not. If you touch a Melibe, your finger will smell like watermelon Jolly Ranchers. How could an animal possibly be any cooler than that?

. . . clam, right? Yes, except in this case the bivalve is not a clam, but a scallop. I was out at the harbor with Brenna again this morning, looking for molluscs for tomorrow's molluscan diversity lab. Brenna was hunting for slugs, of course, and had drawn up a rope that had been hanging in the water for god knows how long. Neglected ropes like this are the stuff of dreams for people like Brenna and me, as all sorts of animals recruit to and colonize them. Hauling one up is like going on a treasure hunt.

Two of the animals that had attached to the rope were small kelp scallops, Leptopecten latiauratus. The smaller of the two was about the size of my thumbnail and the larger was about 1.5 times that size. Their shell patterns are very beautiful:

The larger rock scallop (Chlamys hastata) collected at the Santa Cruz Yacht Harbor. 14 September 2015 © Allison J. Gong
The larger kelp scallop (Leptopecten latiauratus) collected at the Santa Cruz Yacht Harbor.
14 September 2015
© Allison J. Gong
The smaller rock scallop (Chlamys hastata) collected at the Santa Cruz Yacht Harbor. 14 September 2015 © Allison J. Gong
The smaller kelp scallop (Leptopecten latiauratus) collected at the Santa Cruz Yacht Harbor.
14 September 2015
© Allison J. Gong

But really, you don't get a feel for how much fun these animals are until you watch them. Scallops are the most animated of the marine bivalves. They have eyes and sensory tentacles along the ventral edge of the mantle, and react strongly to stimuli. They can clap their valves together so quickly that they actually swim. I wasn't able to make either of mine swim, but did get to watch them for a while.

The whitish object waving around on the left side of the frame is the scallop's foot. Rock scallops are not permanently attached to surfaces (if they were, they wouldn't be able to swim!) but they do use the foot to stick. If they find a spot they like, they try to wedge the dorsal, hinged area of the shell into a crevice.

Just like you and me, scallops have bilateral symmetry, complete with left and right sides. Unlike you and me, however, their bodies are laterally flattened and entirely enclosed between the left and right shells. The only parts of the body that extend from between the shells are the foot and the sensory structures on the mantle edge. Leptopecten has many long filament-like sensory tentacles, and brilliant blue eyes.

I thought I'd provoke a reaction by passing my finger over the animal and casting a shadow over it. Nada. But then it closed its shells a couple of times for no reason that I could discern. However, as my graduate advisor Todd Newberry used to say, The Animal Is Always Right™, and what doesn't seem like anything to me could very well be a threat to a scallop.

And by the way, I did also collect a few slugs and a chiton for tomorrow's lab. The highlight for me, though, was the scallops. I hope my students are as captivated by these little bivalves as I was!


I came of age, in an academic sense, working as a technician in a lab where the research focused on colonial hydroids. The other tech in the lab, Brenda, and I would get sent out to collect hydroids, then spend another day or so picking the predatory nudibranchs off the colonies. The PI of the lab called nudibranchs "the enemies of the state" and they really did have a way of showing up out of nowhere and then eating a hydroid colony down to nothing. It was rather amazing, actually. Brenda and I would swear we'd picked off all the nudibranchs, and more would show up the next day. This same PI had another saying:  "For every hydroid there's a nudibranch that lives on it, eats it, and looks just like it."

Case in point. Today Scott and I were examining not hydroids, but bryozoans, which are a completely unrelated type of colonial animal. We want to see if our tiny juvenile Pisaster stars will eat the bryozoan. It didn't take long to see this:

The nudibranch Corambe sp. on the encrusting bryozoan Membranipora membranacea. 13 August 2015. © Allison J. Gong
The nudibranch Corambe sp. on the encrusting bryozoan Membranipora membranacea. 13 August 2015.
© Allison J. Gong

A bryozoan colony consists of many units, called zooids, that are connected in some way to form a functioning larger body. The brick-like white structures in the above photo are the zooecia, or "houses" of the bryozoan zooids. The round object near the center of the photo with wavy white lines is the nudibranch Corambe. The white lines on the back of the slug make it blend in very nicely with the bryozoan on which it feeds, and break up the outline of the body to disguise its size; how can you determine how big something is if you can't see its edges? This slug is probably 2-3 mm long. As with most creatures this size and so effectively cryptic, it is very easy to overlook the slugs and never see them; however, once you have a good search image they become much more conspicuous and you find them everywhere. Search images are great things.

It's also easier to see something if it's moving, and it turns out that this slug can move pretty fast:

The voice that you hear is Scott's.

Corambe lives primarily on Membranipora and eats it. Membranipora responds to this predation by forming spines along the edges of the colony; the spines make it more difficult for the nudibranch to crawl around. This kind of response is called an inducible defense. The same thing occurs when plants begin to produce noxious chemicals after being munched on by an insect herbivore. Scott and I will set up some feeding treatments for our juvenile stars and Membranipora will be one of the courses served, so we were both glad to see that despite all the slugs we picked off there were still lots of viable zooids remaining.

Here's what a bryozoan is all about. Each zooecium forms the outer casing of one zooid. The zooecium itself is non-living but contains the living part. In Membranipora all of the zooids in the colony are the same, and each one possesses a ciliated tentacular crown called a lophophore. The cilia on the tentacles produce a current that directs food particles to the mouth, which is located at the base of the lophophore. In this video you can see particles moving in the current, and one zooid accidentally sucks in a glom of stuff that is too big. Watch how it tries to get rid of the piece it doesn't want.

See how the individual tentacles sort of bend and then straighten up? I call that tentacle flicking.

If you spend a couple of hours looking at something through a microscope it's inevitable that you'll see something different and new. In one of the bryozoan pieces I saw two little pink blobs in an otherwise empty zooecium. It looked like they were moving, so I zoomed in and saw that they looked like shmoos. "Shmoo" has become my term for any undifferentiated, unsegmented, worm-like thing that I can't identify. These pink shmoos were definitely moving, and here's the video to prove it:

That little squeal at the end of the video? That's me. I was delighted to see that the shmoos have two eyes and turn somersaults. I still have no idea what they are, and I'm totally okay with that. It's enough to know that they exist.


A few months ago, a former student invited me to participate in an activity with local Girl Scouts. The Scouts have a camp this weekend at Henry Cowell Redwoods State Park, and this year their theme is "Commotion in the Ocean." The former student, whose name is Thomas, works for the Squids for Kids program run jointly by the Hopkins Marine Station (the marine lab facility of Stanford University) in Pacific Grove and the NOAA Southwest Fisheries lab here in Santa Cruz. Squids for Kids provides Humboldt squids (Dosidicus gigas) to schools and other kid-focused programs around the country, along with instructions on how to dissect the squids and identify their parts. I think the way it worked is that the Girl Scouts applied for squid and Thomas was assigned the event. He invited me to join him because the Scouts thought it would be good for the girls to see a woman doing the dissection and getting all dirty.

Standard disclaimer: I feel very uncomfortable when people ask me to be a role model for girls, boys, women, men, whoever. It makes me feel self-conscious, as though I'm being scrutinized for a certain intangible quality of role-model-ishness and could somehow come up failing, and that I have to be better than I actually am. So I always go into these things with a little apprehension.

The thing about dissecting a Humboldt squid is that you can't go just part of the way into a squid; you have to dive in with both hands and resign yourself to the smell. Humboldts are large animals, compared to the ones I'm used to working with, and are easy to dissect:  All you do is make a cut open the mantle and all the internal organs are there to observe.

Thomas shows the girls what the Humboldt squid (Dosidicus gigas) is all about, 26 June 2015. © Allison J. Gong
Thomas shows the girls what the Humboldt squid (Dosidicus gigas) is all about, 26 June 2015.
© Allison J. Gong

Problem with just diving into a squid is that once you do, you can't take any more pictures because your hands get all gunked up. This is the only photo I snapped of the morning's activities before things got very smelly. I really didn't want to smell it on me for the next three days so I wore a lab coat and a glove on my left hand, leaving my right hand "clean" so I could drink my tea and keep an eye on the time. Even so, my right hand still has a bit of squid stink after several hours of near-continual dunking in either seawater or hot freshwater. Maybe I'm just imagining that I still smell it.

Experiences like today remind me that I'm not very good with young kids. I am simply not accustomed to dealing with their short attention spans and don't know how to distill an explanation into 25 words or fewer, which is what seems necessary for the youngest Girls Scouts at camp today.

That said, there was one girl I found very intriguing. I don't know her real name but her camp name was Rockcod. She was maybe 9 or 10 years old. She didn't want to touch any part of the squids even though her friends were getting in there and touching the gills, eyeballs, tentacles, and innards. Rockcod told me that her dad does a lot of fishing and she goes with him. They've never caught squids but catch lingcods and various rockfishes, which they take home and eat. Her uncle once caught a yellowfin tuna that was "as big as the table," probably about four feet long.

Despite adamantly not wanting to touch the squids, Rockcod was clearly fascinated by them. She left our station to participate in other activities but kept coming back and asking questions. She wanted to know what all the parts were and really wanted to be around when we opened up the next squid. She asked all the right questions:

  • How do you know if it's a boy or a girl?
  • Where is the ink? Can you write with it?
  • How come two of its arms are so much longer than the others?
  • Where is the mouth?
  • A squid has three hearts? No way!
  • Can you eat it?
  • What do they eat?

Several of the other girls (and most of their adult chaperones) were a bit squeamish and/or offended by the smell. I heard "Ew, that stinks!" more than a few times. Well, they do stink, there's no getting around it. Still, I'd rather smell an honestly dead squid than one that has been preserved in formaldehyde. And you do get used to the smell after a while. Except that I still catch a whiff of it emanating from somewhere on my body every once in a while. Hopefully it goes away with my next shower.

And I did get a thank-you gift!




What better way to start a new blog than to talk about sex?

This morning at the Seymour Center I noticed a blob of what looked like nudibranch eggs on the wall of one of the tanks. Looking around for the likely culprit I saw three big nudibranchs on the tank. Ooh, cool!

One of two slugs of this species in this tank.

This is Dendronotus iris, a large nudibranch, or sea slug. This bad boy/girl had a foot (the flat white bit that you see reflected in the aquarium glass) that was about 15 cm long. The brownish branched structures on the slug's back are its cerata, which function as gills. These animals do not have the ctenidium, or gill, that is typical of marine snails. Other nudibranchs carry their gills in a single plume that surrounds the anus.

This species is distinguished from D. iris by its coloration and some details of its anatomy.

There is one other big slug in this tank. It has a paler body color and cerata that are banded with orange and tipped with white.

Nudibranchs are among the rock stars of marine invertebrates--they are flamboyantly colored, have short adult lives with lots of sex, and leave beautiful corpses when they die. After a planktonic larval life of a few weeks, adult nudibranchs spend their time eating, copulating, and laying eggs. Each slug is a simultaneous hermaphrodite, capable of functioning as both male and female, and mating involves an exchange of sperm. In some other species of nudibranch the act of love can be followed by an act of cannibalism.

Nudibranchs lay egg masses in ribbons or strings that are characteristic of the species. It turns out that Dendronotus egg masses look like Top Ramen noodles:

Egg mass of Dendronotus.

Each of those individual little white blobs is an egg capsule that contains 10-30 developing embryos. These eggs were deposited yesterday (3 June) and the embryos have been developing but are not yet at any distinct stage. With water temperature at about 13C, I think they'll develop pretty quickly.

%d bloggers like this: