Skip to content

On Monday of this week (today is Thursday) I was transferring my baby urchins into clean bowls as I always do on Mondays, and for some crazy reason decided that I needed to measure all 300+ of them. I don't remember how the details of how this decision came about, but it probably went something like this:

  • Me #1:  You know, we should probably measure these guys. We do want to see how fast they're growing, after all.
  • Me #2:  Are you kidding? Do you know how long it's going to take to measure 300 urchins under the microscope? We don't have that kind of time today!
  • Me #1:  Oh, come on, don't be so lazy. How long can it take, really? Let's do it for science!
  • Me #2:  These things always take twice as long as you think they will.
  • Me #1:  It's not as though you have anything better to do this afternoon. I mean, aside from writing a final exam and grading all those research papers you assigned.

Three-and-a-half hours later, Me #2 was soundly kicking Me #1 in the butt and we were all tired. But the urchins got measured and now I have some baseline data so I can track further growth. And, no, I don't have the urchins separated into individual containers so I won't be following individual growth, but will be able to calculate average growth rates across the cohort.

Having to look at each urchin long enough to get it lined up with the ocular micrometer in the dissecting scope gave me a chance to observe how their colors are developing. In the field, urchins of this species (Strongylocentrotus purpuratus) in this size range (mm-3 cm) are usually greenish in color; when these individuals are brought into the lab they turn purple as they continue to grow. I seem to recall that my last batch of lab-grown urchins (in Spring 2012) didn't go through that green phase as juveniles, at least not as vibrantly as what we see in the field. So while I was holding down the current batch of urchins to measure them, I noted their color.

Some of them have a definite green tinge at the base of the spines, which then fades to a mauve-y purple towards the tips. The green coloration is most evident on the younger spines:

Strongylocentrotus purpuratus juvenile, age 118 days. This individual has a test diameter of 2.7 mm. 18 May 2015. © Allison J. Gong
Strongylocentrotus purpuratus juvenile, age 118 days. This individual has a test diameter of 2.7 mm. 18 May 2015.
© Allison J. Gong

In addition to giving the urchins something more substantial than scum to eat, having them on coralline rocks gives me a chance to see some of the other critters that live on the rocks. This particular rock is inhabited by a number of spirorbid polychaete worms that build tiny circular tubes made of calcium carbonate, as well as assorted small barnacles cemented to the rock and other crustaceans crawling around.

This is a close-up shot of one of the spirorbid worms. The tube is entirely covered by pink coralline alga, but the worm's orange tentacular crown and trumpet-shaped operculum (used to close the tube when the worm withdraws) are extended as the worm filter-feeds:

Spirorbid polychaete worm on coralline rock, 18 May 2015. © Allison J. Gong
Spirorbid polychaete worm on coralline rock, 18 May 2015.
© Allison J. Gong

Another photogenic animal that I happened to find was a very small chiton. By the time I found it after measuring all the urchins I didn't have the brain energy to try and key it out; if I can find it again once I've finished grading final exams I'll give it a shot. It is extremely cute, with its bright blue spots, and was very slowly creeping around on the rock when one of the urchins barged in and ran right over it:

The chiton is probably about 4 mm long, just a bit longer than the urchin's test diameter. To the urchin, walking over a chiton isn't much different from walking over a rock; and while the chiton probably doesn't like being walked on it isn't significantly affected by the incident unless the urchin starts gnawing on it. Chitons are the masters of just hunkering down and waiting for things to get better, whether that means the tide coming back or an uncouth urchin moving along and minding its own business.

4

Answer:  When it's a snail! Yes, there are snails that secrete and live in white calcareous tubes that look very similar to those of serpulid polychaete worms. Here, see for yourself:

Serpula columbiana, a serpulid polychaete worm, at Point Piños, 9 May 2015. © Allison J. Gong
Serpula columbiana, a serpulid polychaete worm, at Point Pinos, 9 May 2015.
© Allison J. Gong

The worms secrete calcareous tubes that snake over whatever surface they're attached to. When the worm is relaxed, it extends its delicate pinnate feeding tentacles and uses them to capture small particles to eat; they are what we call suspension feeders.

Serpula columbiana polychaete worms, Seymour Marine Discovery Center, 11 May 2015. © Allison J. Gong
Serpula columbiana polychaete worms, Seymour Marine Discovery Center, 11 May 2015.
© Allison J. Gong

But there are gastropods that secrete calcareous tubes, too. They are the vermetid snails, the local species of which is Thylacodes squamigerus. This is one of my favorite animals in the low intertidal, probably because it is so delightfully un-snail-like.

There are three individuals of T. squamigerus in this photo:

The vermetid snail Serpulorbis squamigerus at Point Piños, 9 May 2015. © Allison J. Gong
The vermetid snail Thylacodes squamigerus at Point Pinos, 9 May 2015.
© Allison J. Gong
Serpulorbis squamigerus at Point Piños, 9 May 2015. © Allison J. Gong
Thylacodes squamigerus at Point Pinos, 9 May 2015.
© Allison J. Gong

Thylacodes is also a suspension feeder, but it gathers food in a very different way. When submerged, it spins out some sticky mucus threads that catch suspended particles, then reels in the threads and eats them.

So how would you tell these animals apart if you see them? Here's a hint:  Look at the tubes themselves.

I invite you to use the comments section to tell me how you'd distinguish between Serpula and Thylacodes.

This morning I took a small group of Seymour Center volunteers on a tidepooling trip to Point Piños (see red arrow in the photo below). Point Piños is a very interesting site. It marks the boundary between Monterey Bay to the right (east) of the point and the mighty Pacific Ocean to the left (west).

Map of Monterey Bay. Red arrow indicates Point Pinos.
Map of Monterey Bay. Red arrow indicates Point Piños.
Point Pinos, 9 May 2015. © Allison J. Gong
Point Piños, 9 May 2015.
© Allison J. Gong

As is my usual habit, we began our exploration on the Pacific side of the point. Almost immediately, Victoria found an octopus! And a couple of meters away, she found another one!

Octopus rubescens at Point Pinos, 9 May 2015. © Allison J. Gong
Octopus rubescens at Point Piños, 9 May 2015.
© Allison J. Gong

As we approach the summer solstice, the algae and seagrasses are at their most lush. Point Piños is a fantastic site for algal diversity; every time I come here I want to take some back with me so I can study it at the lab. Alas, collecting at Point Piños is not allowed even for someone (like me) who holds a valid scientific collecting permit.

Beds of Phyllospadix scouleri at Point Pinos, 9 May 2015. © Allison J. Gong
Beds of Phyllospadix scouleri (surf grass) at Point Piños, 9 May 2015.
© Allison J. Gong
Macroalgae at Point Pinos, 9 May 2015. © Allison J. Gong
Macroalgae at Point Piños, 9 May 2015.
© Allison J. Gong

And yes, that log-like object towards the upper-left corner is a harbor seal (Phoca vitulina). A handful of seals were hauled out on the rocks.

However, I was much more interested in the invertebrates. I wasn't looking for anything specific, but in the back of my mind I was keeping track of certain nudibranchs and looking for small stars.

We did see many Patiria miniata (bat stars) in the 1-2 cm size range. Most of them were a bright orange-red color, but some were beige, yellow, or blotchy. There was one large (bigger than my outstretched hand) Pisaster ochraceus that was intensely orange. And Point Piños is always a good spot to see many of the six-armed stars in the genus Leptasterias.

Patiria miniata (bat star), about 1.5 cm in diameter, 9 May 2015. © Allison J. Gong
Patiria miniata (bat star), about 1.5 cm in diameter, at Point Piños, 9 May 2015.
© Allison J. Gong
Large healthy Pisaster ochraceus (ochre star), 9 May 2015. © Allison J. Gong
Large healthy Pisaster ochraceus (ochre star) at Point Piños, 9 May 2015.
© Allison J. Gong
Leptasterias sp., one of the six-armed stars, 9 May 2015. © Allison J. Gong
Leptasterias sp., one of the six-armed stars, at Point Piños,  9 May 2015.
© Allison J. Gong

In terms of nudibranchs there were many Doriopsilla albopunctata, a yellow dorid with tiny white spots. We saw quite a few of them crawling around on the emersed surf grass, as well as in pools. And of course Okenia rosacea (Hopkins' rose) was there, although not in the huge numbers I was expecting.

Doriopsilla albopunctata at Point Piños, 9 May 2015. © Allison J. Gong
Doriopsilla albopunctata at Point Piños, 9 May 2015.
© Allison J. Gong
Okenia rosasea (Hopkins' rose nudibranch) at Point Piños, 9 May 2015. © Allison J. Gong
Okenia rosasea (Hopkins' rose nudibranch) at Point Piños, 9 May 2015.
© Allison J. Gong

In the low zone I saw a few thalli of the intertidal form of Macrocystis pyrifera, the giant kelp that forms the forests that the California coast is famous for. I'd seen this intertidal form named Macrocystis integrifolia, but it appears that now the two forms (intertidal and subtidal) are both considered to be M. pyrifera. To my eye, the intertidal form differs morphologically by having rounder pneumatocysts (floats) and a holdfast that is less dense than the subtidal form.

Macrocystis pyrifera (giant kelp) growing intertidally at Point Piños, 9 May 2015. © Allison J. Gong
Macrocystis pyrifera (giant kelp) growing intertidally at Point Piños, 9 May 2015.
© Allison J. Gong

Hermit crabs are diverse and abundant at Point Piños. Here's an example of Pagurus samuelis, the blue-banded hermit crab; even when you can't see the blue bands on the legs, the bright red antennae are a major clue to this crab's identity.

Pagurus samuelis (blue-banded hermit crab) at Point Piños, 9 May 2015. © Allison J. Gong
Pagurus samuelis (blue-banded hermit crab) at Point Piños, 9 May 2015.
© Allison J. Gong

When we climbed over the point to the Monterey Bay side, I found two of these little gastropod molluscs, which I didn't recognize. They are about 1 cm long, with a brown lumpy mantle that can covers the shell, which is pinkish in color. After putting it out on Facebook that I needed help with the ID, a bunch of friends and friends of friends chimed in (thanks John, Rebecca, Barry, and David!) and I was able to determine that these little guys are Hespererato vitellina:

Hespererato vitellina (appleseed Erato snail) crawling on Phyllospadix scouleri (surf grass) at Point Piños, 9 May 2015. © Allison J. Gong
Hespererato vitellina (appleseed Erato snail) crawling on Phyllospadix scouleri (surf grass) at Point Piños, 9 May 2015.
© Allison J. Gong

On our way back up the beach we noticed long windrows of Velella velella, the by-the-wind sailors, washed up. While most of them were faded and desiccated, there were enough freshly dead ones that were still blue, which may have washed up on the previous high tide.

Windrows of Velella velella (by-the-wind sailor) washed up on the beach at Point Piños, 9 May 2015. © Allison J. Gong
Windrows of Velella velella (by-the-wind sailor) washed up on the beach at Point Piños, 9 May 2015.
© Allison J. Gong

All in all, a very satisfactory morning. I saw things I expected to see, some things I didn't quite expect but wasn't surprised to see, and some things I'd never seen before. That Hespererato vitellina was completely new to me, which is always exciting.

Next up:  What kinds of things live in white calcareous tubes?

2

This morning I went here (see arrow):

Natural Bridges State Beach, viewed from Long Marine Lab, 4 May 2015. © Allison J. Gong
Natural Bridges State Beach, viewed from Long Marine Lab, 4 May 2015.
© Allison J. Gong

See how it's covered in water? I took this picture at about 13:00, probably right at high tide. And of course when I was out there this morning at 06:00, it was low tide. It wasn't the greatest of low tides but it allowed me to see what I needed to see and have a front-row seat watching the early morning surfers going up and down on the big swell that's blowing in.

Obviously, visits to the intertidal need to be timed with the tide cycle. At this time of the year we get our lowest spring tides in the morning every two weeks or so, which is great for me because I am a creature of the morning. I can get up hours before the sun rises, but don't ask me to do anything that requires any intense brain activity after about 21:30.

Low tide this morning was at 05:29, when it was still almost full dark. There was plenty of light to see by the time I got out to the rocks. The tide wasn't very low and the swell was big, a combination that makes for some pretty spectacular wave watching. Here's a view towards the marine lab from my intertidal bench; look at all that frothy water!

View of Terrace Point from Natural Bridges State Beach, 4 May 2015. © Allison J. Gong
View of Terrace Point from Natural Bridges State Beach, 4 May 2015.
© Allison J. Gong

So the water was big and the tide was mediocre, but it was still a glorious morning. Where I was the bench looked like this:

Looking seaward, Natural Bridges State Beach, 4 May 2015. © Allison J. Gong
Looking seaward, Natural Bridges State Beach, 4 May 2015.
© Allison J. Gong

What a difference seven hours can make! See that tiny black dot in the ocean? That's a surfer. While I was out there none of the three surfers I was watching did any actual surfing.

I can't seem to stop taking pictures of anemones:

A baby Anthopleura sola, measuring about 1.5 cm in diameter, 4 May 2015. © Allison J. Gong
A small Anthopleura sola, measuring about 1.5 cm in diameter, 4 May 2015.
© Allison J. Gong
Anthopleura xanthogrammica, 4 May 2015. © Allison J. Gong
Anthopleura xanthogrammica, 4 May 2015.
© Allison J. Gong
Anthopleura sola adult, 4 May 2015. © Allison J. Gong
Anthopleura sola adult, 4 May 2015.
© Allison J. Gong

My prize of the day appeared as I was walking back. I happened to look down at the right time and saw this little guy:

Little octopus in tide pool at Natural Bridges State Beach, 4 May 2015. © Allison J. Gong
Little octopus in tide pool at Natural Bridges State Beach, 4 May 2015.
© Allison J. Gong

I was able to watch the octopus for a couple of minutes. Its mantle was about 3 cm tall, and I'd guess that all spread out the animal was perhaps a bit larger than the palm of my hand. When I got up to move around to the other side of the pool for a different camera angle, the octopus oozed underneath the mussels and just disappeared.

Before it vanished I was able to catch it in the act of breathing.

Although it looks like a head, given the position of the animal's eyes, the part of the animal that's pulsating is the mantle. The visceral mass and gills are contained in the space enclosed by the mantle; not surprisingly, this space is called the mantle cavity. The octopus flushes water in and out of the mantle cavity to irrigate its gills. When it wants to swim it closes off the opening to the mantle and forces water out through a funnel which can be rotated 360° so it can jet off in any direction. But this time the octopus didn't use jet propulsion. It just oozed away.

1

Today was a big day for me. I got to graduate some of my baby urchins from glass slides onto coralline rocks. They were growing very quickly on the slides, chowing down on scum faster than I can grow it, so now it's time for the biggest ones to really put their Aristotle's lanterns to the test and chew up some rocks.

Coralline algae are red algae that have calcified cell walls, giving them a crunchy texture. They come in two morphs--erect branching forms and as encrusting sheets--and are pink in color. The corallines that I'm using for urchin food are growing as sheets on rocks. In the field it is not uncommon to see little urchins on coralline rocks, and their teeth are more than capable of grinding up the calcified algae.

So today I used my trusty frayed paintbrush to scoop up a total of ~90 urchins from their slides and dropped them onto rocks. I should have taken a picture of this valuable tool of mine, so you can see just how low-tech (and cheap!) my type of marine biology is.

Juvenile sea urchins (Strongylocentrotus purpuratus), age 97 days, 27 April 2015. © Allison J. Gong
Juvenile sea urchins (Strongylocentrotus purpuratus), age 97 days, 27 April 2015.
© Allison J. Gong

The largest urchin on this rock has a test diameter of ~2800 µm. Almost 3 mm now!

Here's a closer view of three of the urchins in the photo above:

Close-up of three urchins (S. purpuratus) on coralline rock, 27 April 2015. © Allison J. Gong
Close-up of three urchins (S. purpuratus) on coralline rock, 27 April 2015.
© Allison J. Gong

It didn't take long for the little urchins to start crawling around on their new substrate. I think they'll be happy with this more natural surface to explore and food to eat.

In the meantime, the remaining babies will stay in their jars or on their slides, eating scum. I will continue graduating urchins to rocks as they get too big for slides, feeling more nostalgic each time.

Just think, only 97 days ago these urchins were zygotes! It's not often that you can say that you've known an organism for its entire life, from the moment of fertilization. I am grateful for the privilege of having the opportunity to undertake such an intimate study of these animals' lives. Although I try at least once every year, this is my first successful urchin spawning since 2012. Those animals, by the way, are what I call my most perfect urchins because, well, they just are. I had originally thought I could use them for dissection, but after caring for them as larvae and the three years since they've metamorphosed, I just can't bring myself to sacrifice them. They are simply perfect.

I don't think I could ever get tired of this.

1

We humans use the term "hitting the wall" when we find ourselves in situations in which progress is elusive despite extreme effort. For endurance athletes or anyone doing any serious physical training it can mean not being able to break one's personal best time for a race, or not being able to continue getting measurably stronger. For me, it felt as though much of graduate school involved hitting various hard walls and coming up with a headache. Maybe it's like that for everyone, but from the perspective inside my own head it sure did seem that I was struggling harder than most.

Sometimes the wall is literal rather than figurative. And for small animals, a surface that we might be able to break through without any effort at all (or without even perceiving it as a surface) can be an impenetrable barrier. The biggest of my baby sea urchins has a test diameter of ~2700 µm now; including spines it probably measures a bit bigger than 3 mm across. While tiny urchins can use the surface tension at the air-water interface to crawl, this big guy is too heavy now to stick to the underside and would fall off of it.

However, I thought this urchin might be able to use the surface tension of a water bubble to grab onto and right itself. A hypothesis like this requires empirical data, so I picked up the little urchin and plopped it, oral side up (so, upside-down), in a bubble of water on a depression slide. As I expected, the urchin crawled over to the edge of the bubble and I could see its tube feet attaching to the underside of the surface tension. Watch here:

I watched continuously for about a minute, and the urchin never did figure out how to turn itself over. I think there may be two reasons for this:

  1. The water bubble at the edge of the depression in the slide was very shallow, probably not deep enough to cover the whole animal for the few seconds that it would be positioned on its edge. If, to the animal, the surface tension proved to be impenetrable, then a comparable situation would be for me to pin you, lying on your side sandwiched between a solid wall in front of you and a hard board against your back, then telling you to roll over. You wouldn't be able to do it, either.
  2. The surface tension of the bubble may simply not have been firm enough for the urchin to grab it and pull. Urchins use their tube feet to pull against hard objects, and adults can actually generate enough leverage to push bricks around. Obviously, it's easier to pull (or push) hard against a solid surface (say, a rock or the side of a glass bowl) than a malleable one such as the inner surface of a bubble.

Now, I'm not by any means an expert in biomechanics, but it seems pretty clear to me that the surface tension is either too hard or too soft to be used by an urchin this size to right itself. Smaller urchins would just crawl on the underside of the surface tension until they reached the side or bottom of the container, and larger urchins would push right through it to reach for whatever was on the other side. I may need to do some more experiments with these urchins and bubbles of various sizes.

Just for fun I took another video of the same animal, this time situated upright. It was much happier this way.

See?  It has pedicellariae in addition to spines and tube feet. It's also getting easier to distinguish the ambulacral and interambulacral areas. These urchins are already starting to develop some purple coloration. Typically they go through a greenish stage before turning purple; maybe that will come later. We'll have to see.

My baby urchins have become scum-eating machines! They are 88 days old now and I am beginning to wonder if I can generate scum fast enough to keep up with them. I did a head count this morning and have three bowls, each of which holds a population of ~100 urchins, and a bowl that contains another 33. The first three bowls are going through food very quickly, and I change their scum slide every 2-3 days. And, since eating results in pooping I change the water every day.

Hungry urchins looking for food:

Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015 © Allison J. Gong
Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015
© Allison J. Gong

After they eat through the food on the upper surface of the slide, the urchins migrate to the lower side and begin munching there. Once most of the food is gone they go on the prowl, and I'll find them on the sides of the bowl looking for something to eat. In the photo, can you tell which urchins are on the underside of the slide? Most of them are, actually. They're the ones where you see a darkish ring around the center; that ring is the peristomial membrane that surrounds the mouth. That's what "peristomial" means, by the way, but you didn't need me to tell you that, did you?

Changing the slide involves using a paintbrush to pick up each urchin and drop it into the new bowl. It's rather tedious but is also the most convenient time to count them. And they do seem happy every time they find themselves in a new bowl with plenty to eat.

Baby urchins with lots of food to eat now:

Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015 © Allison J. Gong
Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015
© Allison J. Gong

Using the clue I gave you up the page, can you find the single urchin on the underside of the slide?

Having pentaradial symmetry means that the urchins don't have forward-backward or left-right axes, and they can and do move in any direction on the horizontal plane. They do, however, have a strong oral-aboral axis, and they definitely have a preference for how their bodies should be oriented with respect to gravity. The normal position is to have the mouth (oral surface) facing downward, with the opposite side (aboral surface) facing up. And for this species, at least, even in the field you don't see them sticking upside-down on overhanging surfaces, unless they have a vertical surface to hang onto as well. These little guys can hang onto the underside of the slide because they're not very heavy yet. Once they get bigger, it'll be a lot more difficult for them.

Setting an urchin down on its aboral surface, with its mouth facing up, will keep it from crawling away very quickly, but sooner or later it will right itself and take off. Even my little babies don't like to be flipped upside-down. This guy was pretty stubborn at first and spent a minute waving its tube feet at me while I looked at it through the microscope, but then took another minute or so to get down to the business of turning over. Don't worry, I cut out the boring first minute so this clip shows only the action sequence.

Quite clearly, urchins don't care about forward-backward or left-right, but they do care about up-down. Like most animals that live in essentially two dimensions, adult urchins prioritize knowing the orientation of one's body with respect to gravity. But remember those bilateral larvae? They swim in any direction in their pelagic, three-dimensional world, although the body always moves through the water in a particular orientation (arm tips first). It seems this is another aspect of metamorphosis that gets overlooked: the transition from a bilateral body that swims in both the horizontal and vertical planes (three body axes, weak response to gravity), to a body with pentaradial symmetry that walks only in the horizontal plane (one body axis, strong response to gravity). Hmm. I'm going to have to think about that for a bit.

Most of the animals that we are familiar with (think of any pets you've ever had) have bilateral symmetry: they have a head end and a tail end, a left and a right, and a top and a bottom. In scientific terms that translates to the anterior-posterior, left-right, and dorsal-ventral axes. Also, most bilateral animals are elongated on the anterior-posterior axis and have some sort of cephalization going on in the anterior end of the body; in other words they have a head, or at least a concentration of neural tissue and sensory structures in the part of the body that encounters the environment first.

Even your basic worm meets all these criteria. Here's a video clip of Nereis sp., an intertidal polychaete worm. The body is conspicuously segmented, as this animal is a somewhat distant relative of earthworms. The body symmetry is clearly bilateral, and you can see that it has an anterior end, which in this case is defined by both the direction of locomotion and the presence of a head:

As "normal" as bilateral symmetry may seem, there are many animals that have a completely different type of symmetry. The cnidarians, for example, are the largest group of animals with radial symmetry. This means that instead of being elongated along an anterior-posterior axis, these animals' bodies are either columnar or umbrella-shaped. In either case, when you look down on them you see a circular shape:

Anthopleura sola, photographed at Natural Bridges State Beach © Allison J. Gong
Anthopleura sola at Natural Bridges State Beach
© Allison J. Gong

An animal with this sort of body plan obviously has no head--no eyes, nose, or concentration of either neural or sensory structures. Being a sea anemone, it lives attached to the sea floor and doesn't walk around much, so there's also no locomotory clue as to a possible anterior end, either. Rather than have most of its neural apparatus located in a particular region, its nervous system is diffusely scattered over the entire body. This animal has the advantage of meeting its environment from all sides and across all of its external surface. It can't be snuck up on, because it has no front or back.

Let's now return to the echinoderm pentaradial symmetry. As you might imagine, the five-way symmetry of echinoderms has strong implications both for other aspects of the animal's anatomy and the way that it interacts with its environment.

Take the example of a sea star:

Dermasterias imbricata at Pigeon Point, 18 January 2015. © Allison J. Gong
Dermasterias imbricata at Pigeon Point, 18 January 2015.
© Allison J. Gong

Echinoderms are structurally more complex than cnidarians, with distinct internal organs. The central disc contains most of the organs, but there are extensions of both the gut and the gonads in each of the five arms. Although, like the cnidarians, the echinoderms don't have a centralized nervous system, they do have very simple eyes that can detect light and dark. And guess where, in an animal with a form of radial symmetry, the eyes are located? Hint:  Think about how the animal encounters its environment. Yes, the eyes are in the tips of the arms, along with chemosensory receptors. Makes sense, doesn't it?

Pentaradial symmetry also affects how an animal locomotes. Since they have no front or back, sea stars and sea urchins can walk in any direction. They can also change the direction of locomotion easily, without needing to turn around the way we would.

There's a natural human tendency to regard creatures like us as somehow better than those different from us. I try to teach my students that complex is not always better (think of the pervasive damage done to a person who has suffered a major brain or spinal cord injury); that there are multiple types of complexity (morphological, behavioral, reproductive, and life cycle); and that the best way to understand an animal is to put yourself in its "shoes" and try to imagine what its life is like, with its anatomy, physiology, and lifestyle. It can be difficult to shed our human-centric biases, but we have to put them aside at least temporarily if we truly want to make sense of what's going on in the world around us.

2

Finally! At long last I have evidence that my juvenile urchins have mouths and are feeding. A week ago I put a batch of seven teensy urchins onto a scuzzy glass slide and have been watching them daily ever since. And yesterday, just as I was beginning to worry that they'd never be able to eat, I saw that some of them had eaten little tracks through the scuzz on the slide.

Here's an example:

Juvenile urchin (Strongylocentrotus purpuratus), age 73 days, 3 April 2015. © Allison J. Gong
Juvenile urchin (Strongylocentrotus purpuratus), age 73 days, 3 April 2015.
© Allison J. Gong

The little urchin still has a test diameter of about 0.5 mm, so it hasn't really started growing yet. However, see the squiggly dark paths? Those are areas of the slide that have been eaten clean. The scuzz is algal in origin, giving the slide an overall brownish-green color, so the scuzz-free parts of the slide are clear--or dark, actually, given that I took this photograph against a black background--having been munched clean by the urchin's teeth. And the other bit of evidence that I saw? Poop! Yes, there were fecal pellets on the slide, which proves that the little urchin has a complete functional gut.

And those small round golden objects you see on the slide? Those are big centric diatoms of the genus Coscinodiscus. They are the only local diatoms that I know of that are big enough to be seen with the naked eye.

Lastly, because I just can't seem to stop myself, here's a video of the little urchin:

I love the sculpturing of the spines. And do you see that three-pronged structure at about 9:00 on the urchin? That's a pedicellaria. On adults of the genus Strongylocentrotus there are four types of jawed pedicellariae, three of which, in my experience, are easy to distinguish on a living specimen. But in this young an animal I can't yet tell how many types of pedicellariae it has. I suppose that the formation of pedicellariae might be the next event for me to follow as these urchins continue to grow and develop.

Anyone who went to graduate school in the sciences remembers what oral exams are like. I remember not having any fun at all in mine, and by the time I was dismissed I wasn't sure what my own name was. Fortunately, that is all ancient history and now I get to spend my time performing a different kind of oral examination on other creatures.

My oldest urchins are now 17 days post-metamorphosis and I've been watching them to see when their mouths break through. It seems to me that 17 days is a long time, but the time is near. Besides, the animal is always right. In the urchin that I examined closely the five teeth of Aristotle's lantern are very close to breaking through the thin membrane covering the mouth opening. The teeth are also much more active than they were a week earlier, as you can see in this short video clip:

I also checked out another tiny urchin and noticed that this individual has startlingly red buccal tube feet:

Juvenile sea urchin (Strongylocentrotus purpuratus), age 66 days, 27 March 2015. © Allison J. Gong
Juvenile sea urchin (Strongylocentrotus purpuratus), age 66 days. 27 March 2015.
© Allison J. Gong

Sea urchins have five pairs of large tube feet on the oral surface, surrounding the mouth. As with all tube feet, the buccal tube feet are part of the animal's water vascular system and are situated in the ambulacral region of the test; they are used to manipulate and grab food. In adults of this species, the buccal tube feet are much larger and more robust than the other tube feet. In this little guy the tube feet are noticeably red, but I can't yet tell if they're bigger than the others.

And just for kicks I took another video:

Yesterday I transferred seven urchins onto a glass slide that I've had basking in the sun in an outdoor tank to develop a thin film of algae. As the urchins' mouths become functional they should be able to start munching on the scuzz on the slide. So far they seem happy to be crawling around on the slide but this morning I didn't see any signs that they'd actually eaten anything.

Juvenile sea urchins (Strongylocentrotus purpuratus), age 67 days. 28 March 2015 © Allison J. Gong
Juvenile sea urchins (Strongylocentrotus purpuratus), age 67 days. 28 March 2015.
© Allison J. Gong

The waiting continues....

%d bloggers like this: