Skip to content

According to my notes at the lab, the last time I spawned urchins was December of 2016, making it four years ago. It has always been something I enjoyed doing, but I didn't have a reason to until now.

When the coronavirus pandemic began almost a year ago now, access to all facilities at the marine lab was restricted to a group of people deemed essential. In my case, "essential" had to do with the fact that I keep animals alive. There were many hoops to jump through and inane questions to answer—for example, "What will happen if you don't go in to check on water and food?" and "How many animals will die if you do not have access to the lab, and how much effort [i.e., $$$] would it take to replace them?"—but in the end someone higher up in the food chain exercised some common sense and decided to let me have continuous access to the lab. So I've been at the lab pretty much every day, to check on things and make sure that air and water are flowing.

So over the summer we were running sort of bare-bones operations at the lab. There were many fewer people looking after everyday things. The autoclave broke and wasn't fixed until September. One of the casualties of this less-than-normal vigilance was one of the cultures in the phytoplankton lab. Our Rhodomonas flasks had been contaminated since late 2019, and we were struggling to rescue them. I tried so hard to keep them going ahead of the contamination, but ultimately failed. As of this writing all of the old Rhodomonas cultures have died.

In October, after the autoclave had been repaired, I decided to take action and replace our inevitably doomed Rhodomonas cultures. I found a company that sells small aliquots of many marine microalgae and ordered a strain of Rhodomonas that was isolated in Pacific Grove. May as well see if a local strain of algae works as a food for local larvae, right? The new Rhodomonas cultures seem to be growing well and it's time to see of urchin larvae will eat and thrive on it.

Equipment and glassware used to spawn sea urchins

About a month ago I collected 10 urchins to spawn. Yesterday was their lucky day! Purple sea urchins (Strongylocentrotus purpuratus) are broadcast spawners, and spawning is both inducible and synchronous. We can take advantage of the inducibility to make them spawn when we want, as long as they have ripe gonads. The difficulty is that we can't tell by looking whether or not an urchin is gravid, so all we can do is try to induce them and then hope for the best.

As I've written before, we induce spawning in sea urchins by injecting them with a solution of potassium chloride (KCl). KCl is a salt solution that causes an urchin's gonopores to open and release gametes if the gonads are ripe. I shot up 10 urchins yesterday, and eight of them spawned. An 80% spawning rate isn't bad, but only two of the eight were female and neither of them had a lot of eggs to give.

Since the gonopores are located on the aboral (top) of the urchin, the easiest way to collect eggs is to invert the animal on a beaker of seawater, like so:

Female sea urchin (Strongylocentrotus purpuratus) spawning
2021-01-12
© Allison J. Gong

In nature the eggs, which are a pale orange color, would be whisked away by currents to be (hopefully) fertilized in the water column. In the lab we can collect the eggs in the beaker, as follows:

This is much less damaging to the animal than trying to pipet eggs off the top of the urchin.

We try to collect sperm and keep it dry, so there is no putting males upside-down on beakers of water. Instead we pipet up the sperm and keep it dry in dishes on ice. When it's time to fertilize the eggs we dilute the sperm with filtered seawater and add a small amount to the eggs.

One of my favorite things ever is watching fertilization take place in real time, under the microscope. It truly is one of nature's most amazing phenomena. It is a great thrill to watch the creation of new beings.

In the video you see eggs being bombarded with sperm, probably at much higher concentrations than they would encounter in the wild. It is common knowledge that it takes only one sperm to fertilize an egg, but what would happen if two sperm penetrated an egg at the same time? I've written about polyspermy and the fast and slow blocks thereto, in case you'd like to refresh your memory about what is happening in the video.

A successfully fertilized egg is easily recognized by its fertilization envelope, which is the slow block to polyspermy.

Zygotes of the purple sea urchin (Strongylocentrotus purpuratus)
2021-01-12
© Allison J. Gong

After fertilization, the next step to watch for is the first cleavage division, which occurs about two hours later.

2-cell embryos of the purple sea urchin (Strongylocentrotus purpuratus)
2021-01-12
© Allison J. Gong

Aren't they pretty?

Over the next day or so the cleavage divisions continue, resulting in the stage that hatches out of the fertilization envelope. This stage is a blastula, which is a hollow ball of ciliated cells. The hollow space inside is called the blastocoel, and it is here that the larval gut will soon develop.

Blastula of the purple sea urchin (Strongylocentrotus purpuratus)
2021-01-12
© Allison J. Gong

It's easier to see the 3-dimensional structure of the blastula by watching it spin around.

As the blastula rotates under the coverslip, you can see the ciliary currents that would propel it through the water. You also see some objects that look like sperm and are, in fact, dead sperm, getting caught up in the currents.

The blastula is the same size as the egg. The embryo can't begin to grow until it eats, which won't happen until it has a gut. Over the next few days an invagination will begin at a certain location on the blastula which is called the blastopore; this invagination will eventually form the first larval gut. At that point I will have to start feeding them and calling them larvae.

And just to remind you of our humble beginnings, we begin life in much the same way as sea urchins. That blastopore, or initial opening to the larval gut, is the anus. The mouth doesn't exist until the invagination breaks through to the opposite end of the embryo. So yes, like the sea urchin, you had an anus before you had a mouth!

4

On the penultimate day of 2020 I met up with my goddaughter, Katherine, and her family up at Pigeon Point to have two adventures. The first one was to find a marble that had been hidden a part of a game. We got skunked on that one, although the marble was found after we left and the hider had sent an additional clue. The second adventure was an excursion to the tidepools. I've had a lackadaisical attitude towards the afternoon low tides this winter, not feeling enthusiastic about heading out with all of the people and the wind and having to fight darkness. But the invitation to join the marble hunt, on a day with a decent low tide, meant that I could spend a good deal of quality time with Katherine.

It is not unusual for a promising low tide to be cancelled out by a big swell. It happens, especially during winter's combination of afternoon lows and occasional storms. The swell yesterday was pretty big.

Here's the view to the north, from Pigeon Point:

Looking north from Pigeon Point
View to the north from Pigeon Point
2020-12-30
©Allison J. Gong

All that whitewash breaking over the rocks is not good for tidepooling, especially with small kids in tow.

This is how things looked to the south of the point:

View to the south from Pigeon Point
2020-12-30
©Allison J. Gong

This is Whaler's Cove, a sandy beach that lies on the leeward side of the point itself. See how the water is much calmer? It's amazing how different the two sides of the point are, in terms of hydrography, wind, and biota. The south side is much easier to get to, especially for newbies or people who are less steady on their feet. Being sheltered from the brunt of the prevailing southbound current means that the biological diversity is, shall we say, a bit subdued when compared to what we see on the north side of the point.

I first took Katherine tidepooling when her sister, Lizzie, was an infant riding in her mom's backpack. Katherine was about four at the time. Her mom and I were suprised at how much she remembered. She recognized the anemones right away, even the closed up cloning anemones (Anthopleura elegantissima) on the high rocks. She remembered to avoid stepping on them—that's my girl!

She wasn't all that keen on touching the anemones, though, even after we told her it feels like touching tape.

Giant green anemone in tidepool
Giant green anemone (Anthopleura xanthogrammica)
2020-12-30
©Allison J. Gong

She did like the sea stars, too. Purple is my favorite color and I think hers, too, so the purple and orange ochre stars were a hit. It was nice to see two large healthy ones.

I had some actual collecting to do, so it was a work trip for me. Late December is not the best time to collect algae, but I wanted to bring some edible seaweeds back to the lab to feed animals. We haven't had any kelp brought in since the late summer, and urchins are very hungry. They will eat intertidal seaweeds, though, and when I go out to the tidepools I bring back what I can. It will be a couple of months until we see the algae growing towards their summer lushness, but even a few handfuls of sea lettuce will be welcome to hungry mouths.

Bright green sea lettuce growing with red algae
Sea lettuce (Ulva sp.)
2020-12-30
©Allison J. Gong

Katherine and I walked up the beach for a little way to study one of the several large-ish crab corpses on the sand. This one was a molt rather than an actual corpse.

Rock crab molt on sand
Rock crab (Romaleon antennarium) molt
2020-12-30
©Allison J. Gong

Katherine found the missing leg a little way off, and we discussed why we call these limbs legs instead of arms. "They use their claws to pinch things, like hands," she said. Not wanting to get into a discussion of serial homology and crustacean evolution with a 6-year-old, I told her that calling the claws "hands" isn't a bad idea, since they are used a lot like the way we use our hands. But, I continued, the crab walks on its other limbs like we walk with our legs, so can we call those legs? She was happy to agree with that. I can tell I will have to be careful about how I explain things to her, so that she doesn't come up with some wonky ideas about how evolution works.

In the meantime, Lizzie, the little sister, was having a grand old time. She flooded her little boots without a complaint and, after her mom emptied the water from them, squelched happily along with soggy socks. That girl may very well grow up to be a marine biologist!

Once the sun went behind the cliff it started getting cold. With one child already wet we decided to head back. On our way up the beach we saw this thing, which I pointed out to Katherine:

"What is it?" she asked. When I asked what she thought it was she cocked her head to one said and said, "It looks like a rock." Then I told her to touch it, which she didn't want to do. So I picked it up and turned it over, to show her the underside:

Gumboot chiton (Cryptochiton stelleri)
2020-12-30
©Allison J. Gong

These big gumboot chitons do look more interesting from this side, because you can at least see that they are probably some kind of animal. Katherine had seen some smaller chitons on the rocks, so she had some idea of what a chiton is, but these are so big that they don't look anything like the ones we showed her earlier. Plus, with their shell plates being covered with a tough piece of skin and invisible, there are no outward signs that this bizarre thing is indeed a chiton. Katherine was not impressed.

At this time of year, when the sun decides to go down it goes down fast. But as we were walking back across the rocks the tide was at its lowest, so there was more terrain to explore. Then it was back up the stairs to the cars, where we could get warm and dry.

Beach and lighthouse at Pigeon Point

Oh, and Katherine and her mom and sister were able to find the hidden marble! They also hid one of their own for someone else to find.

At the end of August I got to play animal wrangler for a film production. Back in the late winter I had been contacted by an intern at KQED in San Francisco, who wanted to shoot some time-lapse footage of anemones dividing. We went out and collected anemones, I got them set up in tanks at the marine lab, and then COVID19 hit and everything went on shut-down. The intern finished her internship remotely and went on to her next position, and in the meantime the anemones stubbornly refused to divide.

The KQED lead videographer for the Deep Look video series, Josh Cassidy, who would had recorded the anemones dividing if they had divided and if the marine lab were not closed, asked me over the summer if we could somehow arrange to meet up to film something else. He had heard of some research that showed the emergent property of sea stars bouncing as they walk along on their many tube feet. Is there any way, he asked, that he could film some of the stars at the lab?

Well, filming at the lab was out of the question. Only essential personnel are allowed in the buildings, and there was no way I could sneak in Josh and all of his gear. We discussed options such as meeting up at a beach but I decided that I needed more control of the site to keep things safe for the animals. We ended up borrowing some friends' back yard for the day, which worked out pretty well. They have a covered pavilion, which was ideal because of course it turned out to be hot the day we filmed. I had several bags of frozen seawater to keep things cool-ish, two coolers for the movie stars themselves, a battery-operated air pump, and 30 gallons of seawater on hand.

Filming for production purposes takes a really long time. Even for a short film, we were working most of the day. Because of course most of the stars were uncooperative. They don't have anything even remotely resembling a brain, but damn if they can't bugger things up. I was feeling kind of bad that my animals were being such troublemakers; Josh, fortunately, was much more patient with them.

And here's the film! You'll see my right hand for about 1.5 seconds.

I didn't realize this at the time, but Josh also writes an article for each episode of Deep Look, for the KQED website. For this episode the article describes the research into the biomechanics of sea star bouncing. I'm quoted at the end.

So watch this short film. I hope it helps put a little bounce in your step.

Every summer, like clockwork, my big female whelk lays eggs. She is one of a pair of Kellett's whelks (Kellettia kellettii) that I inherited from a labmate many years ago now. True whelks of the family Buccinidae are predatory or scavenging snails, and can get pretty big. The female, the larger of the two I have, is almost the length of my hand; her mate is a little bit smaller.

Many marine snails (e.g., abalones, limpets, and turban snails) are broadcast spawners, spewing large numbers of gametes into the ocean and hoping for the best. These spawners have high fecundity, but very few, if any, of the thousands of eggs shed will survive to adulthood. We say that in these species, parental investment in offspring extends only as far as gamete production. Fertilization and larval development occur in the water column, and embryos and larvae are left to fend for themselves.

The whelks, on the other hand, are more involved parents. They maximize the probability of fertilization by copulating, and the female produces yolky eggs that provide energy for the developing embryos and larvae. Rather than throw her eggs to the outside world and hoping for the best, the female whelk deposits dozens of egg capsules, each of which contains a few hundred fertilized eggs.

Over a period of about three weeks I shot several time-lapse video clips of the mama whelk laying eggs. Due to the pandemic we need to work in shifts at the lab. Fortunately I have the morning shift, which means I can start as early as I want as long as I leave before 11:00 when the next person comes in. Each 2.5-hr stint at the lab yielded about 30 seconds of video, not all of which was interesting; even in time-lapse, whelks operate at a snail's pace. Still, I was surprised at how active the female could be while she was apparently doing nothing.

The freshly deposited capsules are a creamy white color, as are the embryos inside them. As the embryos and then larvae grow, they get darker. Each of the fertilized eggs develops through the first molluscan larval stage, called a trochophore larva, within its own egg membrane. The embryo, and then the trochophore, survives on energy reserves provided by the mother snail when she produced the egg. These larvae don't hatch from their egg membrane until they've reached the veliger stage.

Pumpkin seed-shaped egg capsule of the whelk Kellettia kellettii, 13 mm tall.
Egg capsule of Kellettia kellettii
2020-06-20
© Allison J. Gong
Veliger larva of Kellettia kellettii
2020-07-25
© Allison J. Gong

The veliger larva gets its name from a lobed ciliated structure called a velum. Gastropods and bivalves have veliger larvae. As you might expect, the bivalve veliger has two shells, and the gastropod veliger has a coiled snail shell. These Kellettia veligers have dark opaque patches on the foot and some of the internal organs. That coloration is what you see in the photo of the egg capsule. You can see below which of the egg capsules are the oldest, right?

Mated pair of Kellettia kellettii and their egg capsules
2020-07-25
© Allison J. Gong

By the time the veligers emerge from the egg capsule, they have burned through almost all of the energy packaged in the yolk of the egg. They need to begin feeding very soon. The current generated by the beating cilia on the velum both propels the larva through the water and brings food particles to the larva's mouth. The velum can be pulled into the shell, and, as in any snail the opening to the shell can be shut by a little operculum on the veliger's foot. As is the case with most bodies, the veliger is slightly negatively buoyant, so as soon as it withdraws into the shell it begins to sink. However, once the velum pops back out the larva can swim rapidly.

Watch how the veliger swims. You can also see the heart beat!

So now the egg capsules are being emptied as the larvae emerge. I'm not keeping the veligers, so they are making their way through the drainage system back out to the ocean. As of now there are no iNaturalist observations of Kellettia kellettii in the northern half of Monterey Bay, so it appears that for whatever reason the whelks have not been able to establish viable populations here. Or it might be that the whelks are here but there aren't enough SCUBA divers in the water to see them.

These little veligers will be very lucky if any of them happen to encounter a subtidal habitat where they can take up residence as juvenile whelks. Even for animals that show a relatively high degree of parental care, the chances of any individual larva surviving to adulthood are exceedingly small. However, for the reproductive strategy of Kellettia to have evolved and persisted, there must be a payoff. In this case, the reward is an equal or greater reproductive success compared to snails that simply broadcast thousands of unprotected eggs into the water. Some gastropods such as the slipper shell Crepidula adunca, take parental care even further than Kellettia; in this species the mother broods her young under her shell until they've become tiny miniatures of herself, then she pushes them out to face the world and find a turban snail to live on. Crepidula adunca does not have a swimming larval stage at all. The fact that we see a variety of strategies—many eggs with little care, fewer eggs with more care, and brooding—indicates that there's more than one way to be successful.

I've written before about the rocky intertidal as a habitat where livable space is in short supply. Even areas of apparently bare rock prove to be, upon closer inspection, "owned" by some inhabitant or inhabitants. That cleared area in the mussel bed? Look closely, and you'll likely find an owl limpet lurking on the edge of her farm.

See?

Owl limpet at edge of her territory, a clear area surrounded by mussels.
Owl limpet (Lottia gigantea) on her farm at Natural Bridges
2017-04-01
© Allison J. Gong

And of course algae are often the dominant inhabitants in the intertidal.

Assemblage of algae in the intertidal
Assemblage of algae north of Waddell Creek
2020-06-09
© Allison J. Gong

When bare rock isn't available, intertidal creatures need other surfaces to live on. To many small organisms, another living thing may be the ideal surface on which to make a home. For example, the beautiful red alga Microcladia coulteri is an epiphyte that grows only on other algae. Smithora naiadum is another epiphytic red alga that grows on surfgrass leaves.

We describe algae that grow on other algae (or plants) as being epiphytic (Gk: epi "on" + phyte "plant"). Using the same logic, epizooic algae are those that live on animals. In the intertidal we see both epiphytic and epizooic algae. For many of them, the epizooic lifestyle is one of opportunism--the algae may not care which animal they live on, or even whether they live on an animal or a rock. Some of the epiphytes, such as Microcladia coulteri, grow on several species of algae; I've seen it on a variety of other reds as well as on a brown or two (feather boa kelp, Egregia menziesii, immediately comes to mind). Smithora naiadum, on the other hand, seems to live almost exclusively on the surfgrass Phyllospadix torreyi.

Animals can also live as epiphytes. The bryozoan that I mentioned last time is an epiphyte on giant kelp. Bryozoans, of course, cannot move once established. Other animals, such as snails, can be quite mobile. But even so, some of them are restricted to certain host organisms.

The aptly called kelp limpet (Discurria insessa), lives only on the stipe of E. menziesii, the feather boa kelp. Its shell is the exact same color as the kelp where it spends its entire post-larval life. Larvae looking for a place to take up a benthic lifestyle settle preferentially on Egregia where adult limpets already live. It's a classic case of "If my parents grew up there it's probably a good place for me."

Limpet on stipe of feather boa kelp
Discurria insessa on stipe of Egregia menziesii
2020-06-07
© Allison J. Gong

The limpets cruise up and down the stipe, grazing on both the epiphytic diatoms and the kelp itself. They can make deep scars in the stipe and even cause breakage. Which makes me wonder: What happens to the limpet if it ends up on the wrong end of the break? Does it die as the broken piece of kelp gets washed away? Can it release its hold and find another bit of Egregia to live on? Somehow I doubt it.

Discurria insessa on stipe of Egregia menziesii
2018-05-16
© Allison J. Gong

The last time I was in the intertidal I encountered another epiphytic limpet. Like the red alga Smithora naiadum, this snail one lives on the narrow leaves of surfgrass. It's a tiny thing, about 6 mm long, and totally easy to overlook, given all the other stuff going on in the tidepools. But here it is, Tectura paleacea. Its common name is the surfgrass limpet, which actually makes sense.

Top view of surfgrass limpet on leaf of surfgrass
Surfgrass limpet (Tectura paleacea) on surfgrass (Phyllospadix torreyi) at Davenport Landing
2020-07-07
© Allison J. Gong

Tectura palacea feeds on the microalgae that grow on the leaves of the surfgrass, and on the outer tissue layer of the plant. They can obviously grow no larger than their home, so they are narrow, about 3 mm wide. But they are kind of tall, although not as tall as D. insessa.

Lateral view of surfgrass limpet on leaf of surfgrass
Surfgrass limpet (Tectura paleacea) on surfgrass (Phyllospadix torreyi) at Davenport Landing
2020-07-07
© Allison J. Gong

Cute little thing, isn't it? Tectura palacea seems to have avoided being the focus of study, as there isn't much known about it. Ricketts, Calvin, and Hedgpeth write in Between Pacific Tides:

A variety of surfgrass (Phyllospadix) grows in this habitat on the protected outer coast; on its delicate stalks occurs a limpet, ill adapted as limpets would seem to be to such an attachment site. Even in the face of considerable surf, [Tectura] palacea, . . . , clings to its blade of surfgrass. Perhaps the feat is not as difficult as might be supposed, since the flexible grass streams out in the water, offering a minimum of resistance. . . The surfgrass provides not only a home but also food for this limpet, which feeds on the microalgae coating the blades and on the epithelial layers of the host plant. Indeed, some of the plant's unique chemicals find their way into the limpet's shell, where they may possibly serve to camouflage the limpet against predators such as the seastar Leptasterias hexactis, which frequents surfgrass beds and hunts by means of chemical senses.

And that seems to sum up what is known about Tectura palacea. There has been some work on its genetic population structure, but very little about the limpet's natural history. The intertidal is full of organisms like this, which are noticed and generally known about, but not well studied. Perhaps this is where naturalists can contribute valuable information. I would be interested in knowing how closely the populations of T. palacea and Phyllospadix are linked. Does the limpet occur throughout the surfgrass's range? Does the limpet live on both species of surfgrass on our coast? In the meantime, I've now got something else to keep my eye on when I get stranded on a surfgrass bed.

This morning as I was doing my rounds at the marine lab I noticed a pile of eggs next to one of the bat stars (Patiria miniata) in a large table. Somebody, or more likely, multiple somebodies, had spawned overnight. I have absolutely zero time to deal with another ongoing project right now, but I have even less self-control when it comes to culturing invertebrate larvae. So I sucked up as many of the eggs as I could, along with a fair amount of scuzz from the bottom of the table, and took a look.

Assortment of bat star (Patiria miniata) embryos
Embryos of the bat star Patiria miniata, about 1 day old
2020-06-19
© Allison J. Gong

As I've come to expect with stars, the early embryonic stages are developing asynchronously. There were unfertilized eggs (obviously not going to develop at all), zygotes that hadn't divided yet, and other stages.

The coolest thing, though, will take some explaining. Animals begin life as a zygote, or fertilized egg. The zygote undergoes a number of what are called cleavage divisions, in which the cell divides but the embryo doesn't grow. A logical necessity of these two facts is that the cells get smaller and smaller as cleavage continues.

Now let's go back to the earliest cleavage divisions. One cell divides into two, each of those divides into two, and so on. The cell number starts with 1 and goes to 2, then 4, then 8, then 16, and so on. The process is more or less the same for all animals, but in only a few can these divisions be easily seen. Many echinoderms have nice distinct cleavage divisions and transparent-ish embryos, which is why the old-school embryologists in the early 1900s studied them.

Echinoderms are the major phylum in a group of animals called the deuterostomes. Incidentally, chordates (ahem--us) are also deuterostomes. The word "deuterostome" refers to the fact that during development in these animals the anus forms before the mouth does. That's right, folks, you had an anus before you had a mouth.

Another feature that is generally associated with the deuterostomes occurs in early cleavage. Picture this: A cell divides into two cells. Then each of those divides, resulting in four cells. Geometry dictates that the four cells form a plane. That makes sense, right? When the four cells divide again to make the 8-cell embryo, a second plane of cells is formed on top of the first. The second tier can either sit directly on top of the cells of the first tier (radial cleavage) or be twisted 45º so that the cells sit in the grooves between cells in the first tier (spiral cleavage).

Take a look at this embryo. Do you think it has undergone spiral cleavage or radial cleavage?

8-cell embryo of Patiria miniata
8-cell embryo of Patiria miniata
2020-06-19
© Allison J. Gong

This is a textbook example of radial cleavage. In all the sea urchin embryos I've watched over the years, I've never seen radial cleavage as clear and unambiguous as this. It was one of those moments when you actually get to see something that you've known (and taught) about forever.

So yes, echinoderms and other deuterostomes generally undergo radial cleavage. And I will hopefully have larvae to look after again! They will probably hatch over the weekend. On top of everything else that's going on now, additional mouths to feed are the last thing I need. But fate dropped them into my lap and who am I to argue with fate?

Every year, in June, my big whelk lays eggs. I have a mated pair of Kellettia kellettii living in a big tub at the marine lab. I inherited them from a lab mate many years ago now, and they've been nice pets. They've lived together forever, and make babies reliably. As June rolls around I start looking for eggs. This year I want to document the entire process, from egg-laying to larval development. Fortunately, I had the foresight to photograph the parents in May, as I didn't want to disturb the female once she began laying.

The female is significantly larger than the male. I know the big one is the female because that's the one that lays the eggs. I've never managed to catch the whelks copulating, but given the female's track record they either copulate regularly or she is able to store sperm for a long period of time.

In any case, she started laying eggs today. I went in to check on them and there she was!

Female whelk laying eggs
Female whelk (Kellettia kellettii) laying eggs
2020-06-12
© Allison J. Gong

I know from previous years that it can take over a week for the female to lay her entire clutch of eggs. Each of those pumpkin seed-shaped objects is an egg capsule, containing a few dozen embryos. The newly lain capsules are white, as you see above, and will gradually get darker as the embryos develop into larvae. The mother will lay the eggs and then depart. When the larvae are ready to leave the capsule, a small hole will wear through in the top of the capsule and the larvae will swim out. More on that later, hopefully.

I took some time-lapse video of the female, and was able to record her moving over the egg capsules and then leaving. I'd also put some food in the tub, and I think she got distracted.

I think it's really cool to see how well the snail can swivel around on her foot. Snails are attached to their shell at only a single point called the columella, the central axis around which the shell coils. Some snails can extend quite far outside the shell, and they can all pull inside for safety. The dark disc on the back of the foot is the operculum that closes up the shell when the snail withdraws into it.

Tomorrow when I check on things at the lab I'll see if she has resumed laying.

2

I've always known staurozoans (Haliclystus 'sanjuanensis') from Franklin Point, and it goes to reason that they would be found at other sites in the general vicinity. But I've never seen them up the coast at Pigeon Point, just a short distance away. At Franklin Point the staurozoans live in sandy-bottom surge channels where the water constantly sloshes back and forth, which is the excuse I've always used for my less-than-stellar photographs of them. Pigeon Point doesn't have the surge channels or the sand, and I've never seen a staurozoan there. I'd assumed that the association between staurozoans and surge channels indicated a requirement for fast-moving water.

Turns out I was wrong. Or at least, not completely right.

California coastline from Waddell to Pigeon Point

A few weeks ago I was doing some identifications for iNaturalist, and came upon some sightings of H. 'sanjuanensis' at Waddell Beach. I thought it would be a good idea to check it out--to see whether or not the staurozoans were there, and to see how similar (or not) Waddell is to Franklin Point.

Photos of the sites, first Franklin Point:

Rocky intertidal at Franklin Point
Rocky intertidal at Franklin Point
2020-06-06
© Allison J. Gong

And now Waddell:

Rocky intertidal at Waddell
Rocky intertidal at Waddell
2020-06-09
© Allison J. Gong

They don't actually look very different, do they? But I can tell you that the channels at Franklin Point get a lot more surf action, even when the tide is at its absolute lowest, than the channels at Waddell. When we were at Waddell yesterday the channels were more like calm pools than surge channels. It sure didn't look like staurozoan habitat to me.

Which just goes to show you how much I know. It took a while, but we found lots of staurozoans at Waddell! And since the water is so much calmer there, picture-taking was a lot easier. The animals were still active in their own way, but at least they weren't being sloshed around continuously.

Staurozoan attached to red algae at Waddell
Staurozoan (Haliclystus 'sanjuanensis') at Waddell
2020-06-09
© Allison J. Gong

And a lot of them had been cooperative enough to pose on pieces of the green algae Ulva, where they contrasted beautifully.

Staurozoan attached to green alga at Waddell
Staurozoan (Haliclystus 'sanjuanensis') at Waddell
2020-06-09
© Allison J. Gong
Staurozoan attached to green alga at Waddell
Staurozoan (Haliclystus 'sanjuanensis') at Waddell
2020-06-09
© Allison J. Gong

I was even able to capture a few good video clips!

Staurozoans at Waddell
2020-06-09
© Allison J. Gong

So, what have I learned? Well, I learned that I didn't know as much as I thought I did. And that's a good thing! This is how science works. Understanding of natural phenomena increases incrementally as we make small discoveries that challenge what we think we know. With organisms like these staurozoans, about which very little is known anyway, each observation could well reveal new information. The observations I made at Waddell have been incorporated into iNaturalist to join the ones that were made back in May, so little by little we are working to establish just where staurozoans live and how common they are. Maybe they aren't quite as patchy and ephemeral as I had thought!

2

This weekend we have some of the loveliest morning low tides of the year, and fortunately the local beaches have been opened up again for locals. The beaches in San Mateo County had been closed for two months, to keep people from gathering during the pandemic. For the first time in over a year I was able to get out to Franklin Point to check on the staurozoans. These are the elusive and camera shy animals that we don't know much about, except that they are patchy in both space and time.

Yesterday the beach at Franklin Point was quite tall, as a good meter or so of sand had accumulated. This is a normal part of the seasonal cycle of sand movement along the coast--sand piles up in the summer and gets washed away during the winter storms. The rocks that you can see only the tops of in this photo would be much more exposed in the winter.

Beach and rocks at Franklin Point
2020-06-06
© Allison J. Gong

It took a while to find the staurozoans. Every time I visit Franklin Point it takes my search image a while to kick into gear, but each time I find the staurozoans my intuition gets a teensy bit better calibrated. As usual, the staurozoans were very patchy. I'd not see any in the immediate vicinity, then I'd move a meter or so away and see them all over. Part of that is due to usual honing of the search image, but part of it is that the staurozoans really are that patchy.

Staurozoan (Haliclystus 'sanjuanensis)
Staurozoan (Haliclystus 'sanjuanensis') at Franklin Point
2020-06-06
© Allison J. Gong

They are always attached to red algae, often the most diaphanous, wispy filamentous reds out there. And they don't seem to like pools, where the water becomes still for a few moments between save surges. No, they like areas where the water sloshes back and forth constantly.

You can see why it's so difficult getting a decent photo of these animals! They're never still for more than a split-second. Staurozoans may have a delicate appearance, but they're very tough critters. Their bodies are entirely flexible, being made out of jelly, and offer zero resistance to the force of the waves. It's a very low-energy way of thriving in a very high energy environment. Who says you need a brain to be smart?

Trio of staurozoans (Haliclystus 'sanjuanensis')
Trio of staurozoans
2020-06-06
© Allison J. Gong

And, of course, they are predators. Being cnidarians they have cnidocytes that they use to catch prey. The cnidocytes are concentrated in the eight pompon-shaped tentacle clusters at the ends of the arms. To humans the tentacles feel sticky rather than stingy, similar to how our local anemones' tentacles feel. Still, I wouldn't want to put my tongue on one of them. The tentacles catch food, and then the arms curl inward to bring the food to the mouth, which is located in the center of the calyx.

The natural assumption to make is that animals tend feed on smaller and simpler animals. Somehow the predator is always considered to be "better" or at least more complex than the prey. I'm delighted to report that cnidarians turn that assumption upside-down. In terms of morphology, at least, cnidarians are the simplest of the true animals. Their bodies consist of two tissue layers with a layer of snot sandwiched between them. They have only the most rudimentary nervous system, and a simple network of fluid-filled canals that function as both digestive and circulatory system. That said, they have the most sophisticated and fastest-acting cell in the animal kingdom--the cnidocyte--which can inject prey with the most toxic venoms in the world.

They don't look like deadly predators, do they?

Staurozoan (Haliclystus 'sanjuanensis')
Staurozoan (Haliclystus 'sanjuanensis') at Franklin Point
2020-06-06
© Allison J. Gong

Cnidarians use cnidocytes to catch prey and defend against their own predators. The cnidocytes of Haliclystus are strong enough to catch and subdue fish. Anything that can be shoved even partway into a cnidarian's gullet will be digested, even if it isn't quite dead yet. This fish was long dead when we saw it, but its tail is still sticking out of the staurozoan's mouth.

Imagine being shoved head-first into a chamber lined with stinging cells. Death, inevitable but perhaps slow to arrive, would be a blessing. Although perhaps less horrific than being digested slowly feet-first.

Speaking of fishing, I caught one of my own yesterday. I saw it fairly high in the intertidal, above the reach of the surging waves. At first I saw only the pale blotchy tail, and even though I recognized it I didn't think it was alive.

Monkeyface prickleback in a tidepool
Hmm, dead or alive?
2020-06-06
© Allison J. Gong

I poked it with my toe. No reaction. Then Alex found a kelp stipe, and I poked it again. It seemed to move a little bit. I'm a lot less squeamish about live things than dead things, so I picked it up to see how alive it was.

It was a monkeyface prickleback (Cebidichthyes violaceus)!

Monkeyface prickleback (Cebidichthyes violaceus)
Monkeyface prickleback (Cebidichthyes violaceus) at Franklin Point
2020-06-06
© Allison J. Gong

Monkeyface pricklebacks are common enough around here that people fish for them. They (the pricklebacks) hide in crevices in the intertidal. Like other intertidal fishes, they can breathe air and are well suited to hang out where the water drains away twice daily. I put this one in a deeper pool and watched it slither away into the algae.

Staurozoans found always mean a successful day in the intertidal. Day after tomorrow I'm going to look for them at a different spot. iNaturalist says they're there, and I want to see for myself. I'm not sure exactly where to look, but I know the habitat they like. And even if I don't find them, it'll be a nice chance to explore a new site. Finger crossed!

Today was the first time I've gone out on a low tide since before the whole COVID19 shelter-in-place mandates began. Looking back at my records, which I hadn't done until today because it was much too depressing, I saw that my last time out was 22 February, when the low tides were in the afternoon. At the time I made what seemed to be the not-too-bad decision to stay away from the remaining afternoon lows and wait until the spring shift to morning lows, which I like much more. And then then COVID hit and we all had to stay home and beaches were closed. So yeah, it has been much too long and I really needed this morning's short visit to the intertidal.

Pair of black oystercatchers (Haematopous bachmani) at Mitchell's Cove
My companions for a short while this morning, a pair of black oystercatchers (Haematopus bachmani) at Mitchell's Cove
2020-05-08
© Allison J. Gong

Beaches in Santa Cruz County are closed between the hours of 11:00 and 17:00, except that we are allowed to cross the beach to get to the water. This means that surfers, kayakers, SUP-ers, and marine biologists can get out and do their thing. Of course, my particular thing took place hours before the beach restrictions began, so I was in the clear anyway. I didn't venture too far from home, as I wasn't quite certain how easy it would be to get down to the beach.

Spring is the prime recruitment season for life in the intertidal. The algae are coming back from their winter dormancy, and areas that had been scraped clean by sand scour or winter storms are being recolonized. Many of the invertebrates have or will soon be spawning. And larvae that have spent weeks or even months in the plankton are returning to the shore to metamorphose and begin life as an adult. Just as it is on land, spring is the time for life in the sea to go forth and multiply.

For several decades now, marine ecologists have been studying barnacles and barnacle recruitment. Barnacles are a nice system for studying, for example, recruitment patterns and mortality. The cyprid larva, the larval stage whose job it is to find a permanent home in the intertidal, readily settles and metamorphoses on a variety of man-made surfaces; this makes it easy to put out plates or tiles and monitor who lands there. The fact that barnacles, once metamorphosed, remain attached to the same place for their entire lives means an ecologist can measure mortality (or survivorship, which is the inverse) by counting the barnacles every so often.

These are young barnacles (Chthamalus sp.), about 4-5 mm in diameter. I don't know how old they are, but would guess that they recruited in the past couple of months. These individuals all found a nice place to set up, because as I've written before, barnacles need to be in close proximity to conspecifics in order to mate.

Young acorn barnacles (Chthamalus dalli/fissus) on a rock at Mitchell's Cove
Small barnacles (Chthamalus sp.) on a rock at Mitchell's Cove
2020-05-08
© Allison J. Gong

This is a mixed group of Chthamalus sp. and Balanus glandula. Balanus is taller and has straighter sides and a more volcano-like appearance. Larvae of both genera recruit to the same places on rocks in the intertidal, and it is not uncommon to see assemblages like this.

Mixed assemblage of Balanus and Chthamalus barnacles at Mitchell's Cove
Barnacles Balanus glandula and Chthamalus sp. at Mitchell's Cove
2020-05-08
© Allison J. Gong

Both species of barnacles are preyed upon by birds, sea stars, and snails. Predatory snails use their radula to drill a hole through the barnacle's plates and then suck out the body. Some of the barnacles in the photo below are dead--see the empty holes? Those are barnacles that were eaten by snails such as these.

Small barnacles and predatory snails at Mitchell's Cove
2020-05-08
© Allison J. Gong

What was unusual about this morning was the number of snails of the genus Acanthinucella. I don't know that I've ever seen this many of them before.

Large group of Acanthinucella snails at Mitchell's Cove
2020-05-08
© Allison J. Gong

Lots of Acanthinucella means that lots of barnacles are being eaten. And empty (i.e., dead) barnacle tests are more easily dislodged from the rock than live ones are. A lot of dead barnacles could result in bare patches. And guess what? That's what I saw this morning!

Bare patches in barnacle population
Bare patches in barnacle population at Mitchell's Cove
2020-05-08
© Allison J. Gong

And those aren't just empty spaces where nobody settled. Notice the clean edges. These empty spaces formed because barnacles were there, but died recently and fell off. The abundance of Acanthinucella may have indirectly caused these patches to form--by eating barnacles and weakening the physical structure of the population. Bare space is real estate that can be colonized by new residents. See?

Newly settled barnacles
2020-05-08
© Allison J. Gong

These brand new recruits are about 1 mm in diameter. No doubt more will arrive in the coming months, and this patch will fill up with barnacles again. Vacant space is a limited resource in the rocky intertidal, and the demise of one generation provides opportunity for new recruits. And if the barnacles themselves don't occupy all of the space, then other animals and algae will. That's one of the things I love about the intertidal--it is a very dynamic habitat, and every visit brings something new to light. No wonder I missed it so much!

%d bloggers like this: