Skip to content

Intact shells are a limited resource in the rocky intertidal. Snails, of course, build and live in their shells for the duration of their lives. A snail's body is attached to its shell, so until it dies it is the sole proprietor of the shell. Once the snail dies, though, its shell goes on the market to whoever manages to claim it. Empty shells tend not to remain on the market for long.

Hermit crabs also live inside snail shells. They are the ones that compete for empty shells when they do become available. Here in California, at least, the hermit crabs can't kill snails for their shells; they have to wait for a snail to die. And once a shell comes on the market, it will have a taker even if it's not the ideal size for the crab. It's not at all uncommon to see hermit crabs that can fit only their abdomen into the shell, leaving the head and legs exposed and vulnerable. On the other end of the spectrum, many hermit crabs are so small that they can pull into the shell and not be seen by an inquisitive tidepool visitor. Anybody taking a snail shell home as a souvenir—where such takes are allowed, of course—must be certain that there is no tiny hermit crab hiding deep in the depths.

Hermit crab in black turban snail shell
Hermit crab (Pagurus samuelis) in shell of turban snail (Tegula funebralis) at Point Piños
© Allison J. Gong

From a hermit crab's perspective, the best shell is one that is big enough to retreat into but light enough to be carried around. Snail shells come in a variety of shapes and corresponding internal volumes. Turban snails, with their roughly spherical shape, have a large interior space and are coveted by larger hermit crabs. For example, the grainy hand hermit crab (Pagurus granosimanus) seems to really like both black and brown turban snail shells.

Original inhabitant and builder of the shell:

Brown turban snail partially withdrawn into shell
Brown turban snail (Tegula brunnea) at Pistachio Beach
© Allison J. Gong

And opportunistic second inhabitant of the same type of shell:

Grainy hand hermit crab in turban snail shell
Grainy hand hermit crab (Pagurus granosimanus) in brown turban snail (Tegula funebralis) shell
© Allison J. Gong

Other snails are not even remotely spherical. Olivella biplicata, for example, is shaped like the pit of an olive. Unlike Tegula, of which both intertidal species are found in rocky areas, O. biplicata burrows in sand. Note the shape and habitat of this olive snail:

Olive snail
Olive snail (Olivella biplicata) burrowing through sand at Whaler's Cove
© Allison J. Gong

These olive snails have a smaller internal volume, and thus tend to house smaller hermit crabs. Young individuals of P. granosimanus can be found in olive snail shells, but they quickly outgrow the cramped quarters and need to find a larger home. Smaller hermits such as Pagurus hirsutiusculus, though, are often found in olive shells.

Any hermit crab that finds itself robbed of its snail shell has a short life expectancy. The front end of the hermit resembles the front end of any crab, with the familiar armored legs, claws, eyestalks, and antennae. But the abdomen is soft and unarmored, covered by only a thin cuticle. The abdomen is coiled to follow the coiling of the snail shell, which allows the crab's body to curl around the columella, the central axis around which the shell spirals. In this way the crab can hang onto its snail shell and resist a tug by a would-be predator. A strong enough tug, though, will rip the crab's front end (head + thorax) away from its abdomen. So if you ever find yourself with a hermit crab in hand, do not be tempted to remove it from its shell by yanking it out!

The next time you encounter gastropod shells in the tidepools and want to know whether the inhabitant is a snail or a hermit crab, watch to see how it moves. Hermit crabs scuttle, as crabs do, while snails glide along very slowly. You would also notice a difference as you pick up the shell: snails stick to the rock with their foot, which you will feel as a suction. Hermit crabs don't stick at all, so if the shell comes away easily it likely houses a crab instead of a snail. See? Easy peasy lemon squeezy!

Today was the first time I've gone out on a low tide since before the whole COVID19 shelter-in-place mandates began. Looking back at my records, which I hadn't done until today because it was much too depressing, I saw that my last time out was 22 February, when the low tides were in the afternoon. At the time I made what seemed to be the not-too-bad decision to stay away from the remaining afternoon lows and wait until the spring shift to morning lows, which I like much more. And then then COVID hit and we all had to stay home and beaches were closed. So yeah, it has been much too long and I really needed this morning's short visit to the intertidal.

Pair of black oystercatchers (Haematopous bachmani) at Mitchell's Cove
My companions for a short while this morning, a pair of black oystercatchers (Haematopus bachmani) at Mitchell's Cove
© Allison J. Gong

Beaches in Santa Cruz County are closed between the hours of 11:00 and 17:00, except that we are allowed to cross the beach to get to the water. This means that surfers, kayakers, SUP-ers, and marine biologists can get out and do their thing. Of course, my particular thing took place hours before the beach restrictions began, so I was in the clear anyway. I didn't venture too far from home, as I wasn't quite certain how easy it would be to get down to the beach.

Spring is the prime recruitment season for life in the intertidal. The algae are coming back from their winter dormancy, and areas that had been scraped clean by sand scour or winter storms are being recolonized. Many of the invertebrates have or will soon be spawning. And larvae that have spent weeks or even months in the plankton are returning to the shore to metamorphose and begin life as an adult. Just as it is on land, spring is the time for life in the sea to go forth and multiply.

For several decades now, marine ecologists have been studying barnacles and barnacle recruitment. Barnacles are a nice system for studying, for example, recruitment patterns and mortality. The cyprid larva, the larval stage whose job it is to find a permanent home in the intertidal, readily settles and metamorphoses on a variety of man-made surfaces; this makes it easy to put out plates or tiles and monitor who lands there. The fact that barnacles, once metamorphosed, remain attached to the same place for their entire lives means an ecologist can measure mortality (or survivorship, which is the inverse) by counting the barnacles every so often.

These are young barnacles (Chthamalus sp.), about 4-5 mm in diameter. I don't know how old they are, but would guess that they recruited in the past couple of months. These individuals all found a nice place to set up, because as I've written before, barnacles need to be in close proximity to conspecifics in order to mate.

Young acorn barnacles (Chthamalus dalli/fissus) on a rock at Mitchell's Cove
Small barnacles (Chthamalus sp.) on a rock at Mitchell's Cove
© Allison J. Gong

This is a mixed group of Chthamalus sp. and Balanus glandula. Balanus is taller and has straighter sides and a more volcano-like appearance. Larvae of both genera recruit to the same places on rocks in the intertidal, and it is not uncommon to see assemblages like this.

Mixed assemblage of Balanus and Chthamalus barnacles at Mitchell's Cove
Barnacles Balanus glandula and Chthamalus sp. at Mitchell's Cove
© Allison J. Gong

Both species of barnacles are preyed upon by birds, sea stars, and snails. Predatory snails use their radula to drill a hole through the barnacle's plates and then suck out the body. Some of the barnacles in the photo below are dead--see the empty holes? Those are barnacles that were eaten by snails such as these.

Small barnacles and predatory snails at Mitchell's Cove
© Allison J. Gong

What was unusual about this morning was the number of snails of the genus Acanthinucella. I don't know that I've ever seen this many of them before.

Large group of Acanthinucella snails at Mitchell's Cove
© Allison J. Gong

Lots of Acanthinucella means that lots of barnacles are being eaten. And empty (i.e., dead) barnacle tests are more easily dislodged from the rock than live ones are. A lot of dead barnacles could result in bare patches. And guess what? That's what I saw this morning!

Bare patches in barnacle population
Bare patches in barnacle population at Mitchell's Cove
© Allison J. Gong

And those aren't just empty spaces where nobody settled. Notice the clean edges. These empty spaces formed because barnacles were there, but died recently and fell off. The abundance of Acanthinucella may have indirectly caused these patches to form--by eating barnacles and weakening the physical structure of the population. Bare space is real estate that can be colonized by new residents. See?

Newly settled barnacles
© Allison J. Gong

These brand new recruits are about 1 mm in diameter. No doubt more will arrive in the coming months, and this patch will fill up with barnacles again. Vacant space is a limited resource in the rocky intertidal, and the demise of one generation provides opportunity for new recruits. And if the barnacles themselves don't occupy all of the space, then other animals and algae will. That's one of the things I love about the intertidal--it is a very dynamic habitat, and every visit brings something new to light. No wonder I missed it so much!


It has been a while since I've spent any time in the intertidal. There isn't really any reason for this, other than a reluctance to venture out in the afternoon wind and have to fight encroaching darkness. There's also the fact that I much prefer the morning low tides, which we'll have in the spring. However, this past weekend we had some spectacular afternoon lows, and although I was working on Friday and couldn't spare the time to venture out, I went out on Saturday and Sunday.

Saturday was a special day, because I had guests with me. A woman named Marla, who reads this blog, contacted me back in the fall. She said she wanted to do something special for her husband's birthday, and asked if I'd be willing to take them to the intertidal. It turns out that Andrew's birthday was around this past weekend, and he had family coming out from Chicago to celebrate. They picked the perfect weekend, because the low tides we had were some of the lowest of the year. So on Saturday I met up with Marla, Andrew (her husband), and Betsy (Andrew's sister) and we all traipsed out to Natural Bridges.

This was our destination for the afternoon:

Intertidal "island" at Natural Bridges
© Allison J. Gong

Taking civilians into the intertidal can be tricky, because they often come with expectations that don't get met. Like expecting to see an octopus, for example. I explain that the octopuses are there, but are better at hiding from us than we are at finding them, but that never feels very satisfactory. This trio, however, were fun to show around. The tide was beautifully low and we had fantastic luck with the weather. It had rained in the morning, but the afternoon was clear and sunny. I congratulated Marla on remembering to pay the weather bill. And the passing stormlet didn't come with a big swell, so the ocean was pretty flat. We were able to spend some quality time in the mid-tidal zone, with occasional forays into the low intertidal.

Andrew, Marla, and Betsy standing on intertidal mussel bed at Natural Bridges State Beach
Andrew, Marla, and Betsy at Natural Bridges
© Allison J. Gong

The typical Natural Bridges fauna--owl limpets, mussels, chitons, anemones, etc.--were all present and accounted for. Of course, there isn't much algal stuff going on in mid-January.

Given the time of year (mid-January) and the time of day (late afternoon), the sun was coming in at a low angle. This was tricky for photographing, both in and out of water. However, sometimes good things happen, as in this photo below:

Tidepool at Natural Bridges
© Allison J. Gong

That's a big kelp crab (Pugettia producta) nestled among four sunburst anemones (Anthopleura sola). Kelp crabs are pretty placid creatures, for crabs, and usually take cover when approached. But this one remained in plain sight, holding so still that I thought it was dead. Even when I hovered directly over it and blocked the sun, it didn't move at all. Then it occurred to me that maybe he was having the sexy times with a lady friend. So I very carefully reached down and gave him a tap on the carapace. He flinched a little, so I knew he wasn't dead, but made no move to get away. And I caught a glimpse of a more golden leg underneath him.

Pair of courting kelp crabs (Pugettia producta)
© Allison J. Gong

Crabs live their entire lives encased in a rigid exoskeleton, and can mate only during a short window of opportunity after a female molts. Early in the breeding season, a female crab uses pheromones to attract nearby males. When a suitable male approaches, she may let him grab her in a sort of crabby hug. That's what this male kelp crab is doing to his mate. They may remain in this embrace for several days, waiting until the female molts and her new exoskeleton is soft. At that point the male will use specialized appendages to insert packets of sperm into the female's gonopores. The two will then go their separate ways.

We didn't disturb these crabs, and let them go on doing their thing. By now the sun was going down, so we headed back up and were rewarded with a glorious sunset.

Always a great way to end the day!

The intertidal sculpins are delightful little fish with lots of personality. They're really fun to watch, if you have the patience to sit still for a while and let them do their thing. A sculpin's best defense is to not be seen, so their first instinct is to freeze where they are. Then, if a perceived threat proves to be truly frightening, they'll scoot off into hiding. They can also change the color of their skin, either to enhance camouflage or communicate with each other.

Around here we have a handful of sculpin species flitting around in our tidepools. Sculpins can be tricky to identify even if you have the fish in hand--many of the meristics (things you count, such as hard spines and soft rays in the dorsal fin, or the number of scales in the lateral line) used to distinguish species actually overlap quite a lot between species. The fishes' ability to change color means that skin coloration isn't a very reliable trait. When I was in grad school there was another student in my department who was studying the intertidal sculpins, and she told me that most of the ones we see commonly are either woolly sculpins (Clinocottus analis) or fluffy sculpins (Oligocottus snyderi). I've developed a sort of gut feeling for the gestalt of these species, but I'm not always 100% certain of my identifications.

Sculpin in a tidepool at Asilomar State Beach. The fish is colored pink and brown, to match its surroundings in the tidepool.
Sculpin at Asilomar State Beach
© Allison J. Gong

Anyway, back to the camouflaged sculpins. The ability to change the color of the skin means that sculpins can match their backgrounds, which comes in very handy when there isn't anything to hide behind. Since the environment is rarely uniformly colored, sculpins tend to have mottled skin. Some can be banded, looking like Oreo cookies. The fish in this photo lives in a pool with a granite bottom. The rock contains large quartz crystals and is colonized by tufty bits of mostly red algae. There is enough wave surge for these fist-sized rocks to get tumbled about, which prevents larger macroalgae from colonizing them.

Other shallow pools higher up in the intertidal at Asilomar have a different type of rocky bottom. The rocks lining the bottom of these pools are whitish pebbles that are small enough to be tossed up higher onto the beach. I don't know whether or not these pebbles have the same mineral content as the larger rocks lower in the intertidal, but they do have quartz crystals. The pebbles are white. So, as you may have guessed, are the sculpins!

Sculpins on a gravel bottom in a tidepool at Asilomar State Beach. The fish are white and gray in color, to match the color of the gravel in their pool.
Sculpins at Asilomar State Beach
© Allison J. Gong

Other intertidal locations have different color schemes. On the reef to the south of Davenport Landing Beach, you will see a lot of coralline algae. Some pools are overwhelmingly pink because of these algae. Bossiella sp. is a common coralline alga at this location.

What color do you think the sculpins are in these pools?

Give yourself a congratulatory pat on the back if you said "pink"!

Sculpin in a tidepool at Davenport Landing. The fish is mottled pink and brown, for camouflage among the pink coralline algae in the pool.
Sculpin and coralline algae (Bossiella sp.) at Davenport Landing
© Allison J. Gong

Sculpins aren't the only animals to blend in with coralline algae. Some crustaceans are remarkably adept at hiding in plain sight by merging into the background. Unlike the various decorator crabs, which tuck bits and pieces of the environment onto their exoskeletons, isopods hide by matching color.

Turning over algae and finding hidden creatures like these is always fun. For example, I saw these isopods at Pescadero this past summer. See how beautifully camouflaged they are?

Sometimes, when you're not looking for anything in particular, you end up finding something really cool. Last weekend I met up with students in the Cabrillo College Natural History Club for a tidepool excursion up at Pigeon Point. We were south of the point at Whaler's Cove, where a staircase makes for comparatively easy access to the intertidal.

Photo of Whaler's Cove just south of Pigeon Point, during an autumn afternoon low tide
Whaler's Cove at Pigeon Point
©Allison J. Gong

It's fun taking students to the intertidal because I enjoy helping them develop search images for things they've never seen before. There really is so much to see, and most of it goes unnoticed by the casual visitor. Often we are reminded to "reach for the stars," when it is equally important to examine what's going on at the level of your feet. That's the only way you can see things like this chiton:

A chiton (Mopalia muscosa), heavily encrusted with a variety of red algae, at Whaler's Cove.
Mopalia muscosa at Whaler's Cove
© Allison J. Gong

Mopalia muscosa is one of my favorite chitons. It is pretty common up and down the California coast. However, like most chitons it is not very conspicuous--it tends to be encrusted with algae! This individual is exuberantly covered with coralline and other red algae and has itself become a (slowly) walking bit of intertidal habitat. It is not unusual to see small snails, crustaceans, and worms living among the foliage carried around by a chiton. Other species can carry around some algae, but M. muscosa seems to be the most highly decorated chiton around here. I showed this one to some of the students, who then proceeded to find several others. A search image is a great thing to carry around!

Compared to the rocky intertidal, a sandy habitat can be a difficult place to live. Sand is inherently unstable, getting sloshed to and fro with the tides. Because of this instability there is nothing for holdfasts to grab, so there are many fewer algae for animals to eat and hide in. Most of the life at a sandy beach occurs below the surface of the sand, and is thus invisible to anyone who doesn't want to dig. There's a beach at Whaler's Cove where I've found burrowing olive snails (Olivella biplicata) plowing along just below the surface. I wanted to show them to the students, so I waded in and rooted around. I did find Olivella, but I also found a burrowing shrimp. I think it's a species of Crangon.

Shrimp on sandy bottom of a shallow tidepool at Whaler's Cove. The shrimp is colored to match the sand.
Shrimp (Crangon sp.) at Whaler's Cove
©Allison J. Gong

Now that is some damn fine camouflage! If the shrimp didn't cast its own shadow, it would be invisible. Even so, it was clearly uneasy sitting on the surface like that. I had only a few seconds to shove the camera in the water and snap a quick photo before the shrimp wriggled its way beneath the sand again.

As I've said before, observation takes practice and patience. To look at something doesn't mean you truly see it. That's why it is so important to slow down and let your attention progress at the pace of the phenomenon you're observing. If the only things that catch your eye are the ones that flit about, then I can guarantee you will never find a chiton in the intertidal. And wouldn't that be a sad thing?

There are certain creatures that, for whatever reason, give me the creeps. I imagine everyone has them. Some people have arachnophobia, I have caterpillarphobia. While fear of some animals makes a certain amount of evolutionary sense—spiders and snakes, for example, can have deadly bites—my own personal phobia can be traced back to a traumatic childhood event involving an older cousin and a slew of very large tomato hornworms. Even typing the words decades later makes me want to rub my hands on my jeans.

But enough about caterpillars. This Halloween I want to share something that isn't nearly as disgusting, but can still creep me out sometimes. Commonly called skeleton shrimps, caprellid amphipods are a type of small crustacean very common in certain marine habitats. They are bizarre creatures, but a close look reveals their crustacean nature. For example, they possess the jointed appendages and compound eyes that only arthropods have.

Female caprellid amphipod (Caprella sp.)
22 October 2017
© Allison J. Gong

Around here the easiest place to find caprellids is at the harbor, where they can be extremely abundant. The last time I went to the harbor to collect hydroids for my class, the caprellids were swarming all over everything. When I brought things back to the lab I had to spend an hour or so picking the caprellids off the hydroids. I don't think they eat the 'droids, but they gallop around and keep messing up the field of view, making observation difficult. They're essentially just a PITA to deal with, and everything is easier after they've been removed.

Caprellid amphipods (Caprella sp.) at the Santa Cruz Yacht Harbor
23 June 2017
© Allison J. Gong

Caprellids are amphipods, members of a group of crustaceans called the Peracarida (I'll come back to the significance of the name in a bit). They have the requisite two pairs of antennae that crustaceans have, and seven pairs of thoracic appendages of varying morphology. Some of these thoracic legs are claws or hooked feet that like to grab onto things. A caprellid removed from whatever it's attached to and placed by itself in a bowl of seawater thrashes around spastically. Only when it finds something to grab does it calm down. Even then, they attach with their posterior appendages and wave around the front half of the body in what I call the caprellid dance: they extend up and forward, and sort of jerk front to back or side to side. It isn't pretty.

A bunch of caprellids removed from their substrate and dumped into a bowl together will use each other as something to grab. This forms the sort of writhing mass that makes my skin crawl. I was nice enough to give them a piece of bryozoan colony to hang onto, but even so they ended up glomming together.

Now, back to the thing about caprellids being peracarids. The name Peracarida means "pouch shrimp" and refers to a ventral structure called a marsupium, in which females brood their young. Males don't have a marsupium, so adult caprellids are sexually dimorphic. When carrying young, a female caprellid looks like she's pregnant. See that caprellid in the top photo? She's a brooding female. That's all fine, until her marsupium itself starts writhing. This ups the creepiness factor again. Here's that same brooding female, in live action:

Crustaceans obviously don't get pregnant the way that mammals do, but many of them spend considerable energy caring for their young. Well, females do, at least. A female caprellid doesn't just carry her babies around inside a pouch on her belly. Although she isn't nourishing them from her own body in the way of mammals (each of the youngsters in the marsupium is living off energy stores provisioned in its egg), the mother does aerate the developing young by opening and closing the flaps to the marsupium. This flushes away any metabolic wastes and keeps the juveniles surrounded by clean water. As the young caprellids get bigger, they begin to crawl around inside the pouch, and eventually leave it. They don't depart from their mother right away, though; rather they cling to her back for a while, doing the caprellid dance in place as she galumphs along herself.

Until the juveniles strike out on their own they form a small writhing mass on top of a female who can herself be part of a larger writhing mass. And the sight through the microscope of all these long skinny bodies jerking around spasmodically can indeed be very creepy. Fortunately not as creepy as caterpillars, or I wouldn't be able to teach my class or go docking with my friend Brenna. And it's a good thing caprellids are small, 'cause if they were any bigger. . . just, no.


Although the world's oceans cover approximately 70% of the Earth's surface, most humans interact with only the narrow strip that runs up onto the land. This bit of real estate experiences terrestrial conditions on a once- or twice-daily basis. None of these abiotic factors, including drying air, the heat of the sun, and UV radiation, greatly affects any but the uppermost few meters of the ocean's surface so most marine organisms don't need to worry about them. Despite the apparent paradox of where they live, intertidal organisms are also entirely marine--they cannot survive prolonged exposure to in air or freshwater. So how do they manage to live here?

Some organisms have a physiological tolerance for difficult conditions. These tidepool copepods and periwinkle snails, for example, are able to survive in the highest pools in the splash zone, where salinity can be either very high (due to evaporation) or very low (due to rain or freshwater runoff), dissolved oxygen is often depleted due to high temperature, and temperature itself can be quite warm. Sculpins and other tidepool fishes cope with low oxygen levels by gulping air and/or retreating to deep corners of their home pools.

Of course, animals that can locomote have the option of moving to a more favorable location. Other creatures, living permanently attached to their chosen site, aren't quite so lucky. Let's take barnacles as an example.

Nauplius larva of the barnacle Elminius modestus
© Wikimedia Commons

Barnacles have two planktonic larval stages: the nauplius and the cyprid. The nauplius is the first larval stage and hatches out of the egg with three pairs of appendages. It can be distinguished from the nauplius of other crustaceans by the presence of two lateral "horns" on the anterior edge of the carapace. The nauplius's job is to feed and accumulate energy reserves. It swims around in the plankton for several days or perhaps a couple of weeks, getting blown about by the currents and feeding on phytoplankton.

Cyprid larva of a barnacle

After sufficient time feeding in the plankton, a barnacle nauplius metamorphoses into the second larval stage, the cyprid. A cyprid is a bivalved creature, with the body enclosed between a pair of transparent shells. It has more appendages than the nauplius, and these are more differentiated. If the nauplius has done its  job well, then the cyprid also contains a number of oil droplets under its shell. These droplets are of crucial importance, because the cyprid itself does not feed. For as long as it remains in the plankton it survives on the calories stored in those droplets. The cyprid's job is to return to the shore and find a suitable place on which to settle. Somehow, a creature about 1 mm long, being tossed about by waves crashing onto rocks, has to find a place to live and then stick to it.

Returning to the topic of the challenges that marine organisms face when they live under terrestrial conditions, let's see how these barnacles manage. Along the northern California coast we have a handful of barnacle species living in the intertidal. In the higher mid-tidal regions at some sites, small acorn barnacles of the genera Balanus and Chthamalus may be the most abundant animals.

Mixed population of the acorn barnacles Balanus glandula and Chthamalus dalli/fissus at Davenport Landing
27 June 2017
© Allison J. Gong

However, nowhere is a particular pattern of barnacle distribution more evident than at Natural Bridges. Here, the barnacles in the high-mid intertidal are small, and concentrated in little fissures and cracks in the rock.

I think most of these small (~5 mm) barnacles are Balanus glandula:

Small acorn barnacles (Balanus glandula) at Natural Bridges
11 October 2017
© Allison J. Gong

And here's a closer look:

Small acorn barnacles (Balanus glandula) at Natural Bridges
11 October 2017
© Allison J. Gong

If all of the rock surfaces were equally suitable habitat, the barnacles would be distributed more randomly over the entire area. Instead, they are clearly segregated to the cracks in the rock. Each of these barnacles metamorphosed from a cyprid into a juvenile exactly where it is currently located. The cyprid may be able to move around to fine-tune its final location, but once the decision has been made that X marks the spot and the cyprid has glued its anterior to the rock, the commitment is real and lifelong. The barnacle will live its entire life in that spot and eventually die there. It is quite probable that cyprids landed in those empty areas on the rock, but they didn't survive to adulthood.

How did this distribution of adult barnacles come to be?

There is one very important biological reason for barnacles to live in close groups, and that is reproduction. They are obligate copulators, which I touched on in this post, and as such need to live in close proximity to potential mates. But today I'm thinking more about abiotic factors. In a habitat like the mid-mid rocky intertidal, desiccation is a real and daily threat. Even a minute crack or shallow depression will hold water a bit longer than an exposed flat surface, giving the creatures living there a tiny advantage in the struggle for survival. No doubt cyprid larvae can and do settle on those empty areas of the rock. However, they likely die from desiccation when the tide recedes, leaving only the cyprids that landed in one of the low areas to survive and metamorphose successfully. There are other factors as well, such as the presence of adult individuals, that make a location preferable for a home-hunting cyprid. In addition to facilitating copulation, hanging out in a cluster slows down the rate of water evaporation, giving another teensy edge to animals living at the upper limit of their thermal tolerance.

Lower in the intertidal, where terrestrial conditions are mitigated by more time immersed, barnacles and other organisms do indeed live on flat rock spaces. But at the high-mid tide level and above, macroscopic life exists mostly in areas that hang onto water the longest. Pools are refuges, of course, but so are the tiniest cracks that most of us overlook. Next time you venture into the intertidal, take time on your way down to stop and salute the barnacles for their tenacity.


About three weeks ago I collected some mussels from the intertidal, to use both in the lab and in the classroom. A mussel can itself be an entire habitat for many other organisms. Many of the mussels I brought into the lab this last time were heavily encrusted with barnacles and anemones. I wanted to look more closely at one of the anemones so I took the mussel to the microscope. And, as often happens when I look at stuff under the microscope, I got totally distracted by things other than what I intended to study.

But for the record, this is the anemone that started the whole chain of events:

A small aggregating anemone (Anthopleura elegantissima). 5 December 2016 © Allison J. Gong
A small aggregating anemone (Anthopleura elegantissima).
5 December 2016
© Allison J. Gong

Below the anemone there's a thick mat of small acorn barnacles (Balanus glandula) and a couple of leaf barnacles (Pollicipes polymerus). They were all alive when I brought the mussel into the lab, and over the weeks a few of them have died. But many of them are still kicking, both figuratively and literally.

Barnacles are most strange animals. Believe it or not, they are crustacean arthropods, somewhat closely related to crabs and lobsters. They live encased within a shelter of calcareous plates, which they can close seal up against predators and desiccation. I've never figured out why they are called "acorn barnacles," as they don't look anything like acorns to me, but in Balanus and such the base of the shelter is glued directly to a rock or some other hard surface. Leaf barnacles are shaped very differently, and have a fleshy stalk between the shelter that houses the main body of the animal and the rock surface.

Small acorn barnacles (Balanus glandula). 5 December 2016 © Allison J. Gong
Small acorn barnacles (Balanus glandula).
5 December 2016
© Allison J. Gong
Close-up view of a leaf barnacle (Pollicipes polymerus). 5 December 2016 © Allison J. Gong
Close-up view of a leaf barnacle (Pollicipes polymerus).
5 December 2016
© Allison J. Gong

To picture what's going on with a barnacle, imagine a shrimp lying on its back, then curl it up and stick the whole thing inside some calcareous plates. The thoracic appendages would be facing up. In barnacles the thoracic appendages are modified to be clawlike feeding structures called cirri. Barnacles are filter-feeders, collecting particles from the water by maneuvering the cirri in a sort of grasping fashion. So in a nutshell, or more precisely a test, a barnacle lies on its back and kicks its legs out to catch food.

Here's what B. glandula looks like when feeding. Note the clearly jointed cirri, with fine hairs that help catch particles. The cirri can be controlled independently, as you can see when they flick towards the center, and the entire apparatus can be rotated quite a bit.

Same deal with Pollicipes.

So that's the feeding part. A little strange, but not as interesting as the barnacles' sex lives. Let's start with some background about sexual function. And get your mind out of the gutter; this is real science stuff! Most of the animals that you're familiar with are described as dioecious (Gk: "two houses"). This means that female and male sexual functions are segregated; in other words, there are male bodies and female bodies. Other animals are described as monoecious (Gk: "one house"), so that a single body has both female and male sexual function. Monoecious animals could also be described as hermaphroditic. Some monoecious animals have male and female function in a single body at the same time; we call these simultaneous hermaphrodites. If a body first functions as one sex and then either acquires or switches to the other sex, we say the animal is a sequential hermaphrodite. Many fishes, including the California sheephead and the anemone fishes of coral reefs, are sequential hermaphrodites. Make sense?

Barnacles are simultaneous hermaphrodites. If you dissect an adult barnacle you will find mature ovaries and testes. This means that every barnacle can be both a mother and a father. The logical assumption is that monoecious animals should just fertilize their eggs with their own sperm. . . however, this generally isn't the case. The whole point of sexual reproduction is to combine the genomes of two individuals, and self-fertilization obviously doesn't accomplish this. So even though there are many hermaphroditic animals, very few of them are self-fertile.

One other weird thing about barnacles, and crustaceans in general, is their sperm. Arthropods have non-flagellated sperm, which means they don't swim (although some of them have amoeboid sperm that can ooze around a little bit). Many marine animals reproduce by broadcast spawning; that is, by throwing their gametes into the water, where fertilization takes place. Fertilization is facilitated by the sperms' ability to swim towards conspecific eggs.

Barnacles, with their non-swimming sperm, generally cannot rely on broadcast spawning to get sperm to egg. They must copulate. How do you suppose they do this? The same way that other animals (e.g., Homo sapiens) copulate, by using a penis or some other structure to transfer sperm from one individual to the body of another. In barnacles the penis's technical name is intromittent organ. The penis is inserted into the test of a neighboring barnacle and sperm is delivered. The receiving barnacle uses the sperm to fertilize its eggs. Unlike the cirri, the penis is unjointed and flexible, the better to seek out and slip into potential mates. You can see the intromittent organ unrolled and poking around.

Now think about the ramifications of these constraints. Barnacles live their entire post-larval lives permanently cemented to a rock. They also have non-motile sperm so sperm transfer can occur only by copulation. If the key to reproductive success is to mate with as many other individuals as possible, what do you suppose natural selection has done? That's right: barnacle anatomists, including the great Charles Darwin himself, have noticed that barnacles have incredibly long penises. In fact, compared to overall body size, barnacles have the longest penises in the animal kingdom, up to 15 times the length of the body! That's what you call bragging rights. Not all barnacle species are so amply endowed, however. The same leaf barnacle that I observed today (P. polymerus) has recently been reported to be a spermcaster; their penises are shorter than body length, and they release sperm that are captured by their downstream neighbors.

Wonders never cease.

My friend Peter Macht is the aquarium curator at the Seymour Marine Discovery Center. He is responsible for all of the live (i.e., wet) exhibits and has a team of student and volunteer aquarists who help him care for the animals in the hall and behind the scenes. Peter and I go way back together, to years before the Seymour Center opened in 2000. Back then the only public space at Long Marine Lab was called the Shed Aquarium because it was, literally, in a wooden shed. I do miss the marine lab the way it was then, when I knew everybody who was there and it was a quieter and more peaceful place to work. However, we've come a long way, baby, and the Seymour Center is in just about every way imaginable, a huge improvement over the Shed Aquarium.

For one thing, there are two large exhibits in the Seymour Center, each of which would occupy about half the volume of the old Shed Aquarium. One of these tanks, the Sandy Seafloor tank, has housed many different animals over the years: surf perches, sand dabs, sharks, rays, señoritas, and various invertebrates. My personal favorite continues to be the burrowing sea star Astropecten, although she hasn't been on exhibit for several years now. The current inhabitants are a close second favorite, even though when they first arrived I didn't expect them to be nearly as fascinating as I've found them.

Pleuroncodes planipes is a little red crab commonly called the pelagic crab or the tuna crab. For once the common names reveal something about the biology of the animal--these crabs spend their lives in the water column over the continental shelf, at least as youngsters, and are one of the favored food items of tunas. They are usually found in the waters of southern California and Mexico, but during the El Niño event of 2015 they washed onto the beaches around Monterey Bay in humongous numbers; they also did so during the ENSO event of 1982-1983.

Front view of a living pelagic crab, P. planipes. 22 November 2016 © Allison J. Gong
Front view of a living pelagic crab, P. planipes.
22 November 2016
© Allison J. Gong
Lateral view of a living pelagic crab, Pleuroncodes planipes. 22 November 2016 © Allison J. Gong
Lateral view of a living pelagic crab, Pleuroncodes planipes.
22 November 2016
© Allison J. Gong

Although they resemble crayfish, Pleuroncodes is a crab. They are anomuran crabs more closely related to hermit crabs and porcelain crabs than to "regular" brachyuran crabs such as shore crabs and rock crabs. The way you tell the difference between anomuran and brachyuran crabs is to count the number of thoracic walking legs, keeping in mind that the claws are included as walking legs: anomurans have four pairs while brachyurans have five pairs. You can see in the picture of the lateral view that this crab has three pairs of stick-like legs and one pair of chelipeds (claws).

Being arthropods, red crabs molt periodically. Peter has been collecting data on frequency of molts for individual crabs since the spring of 2016. Doing so requires isolating crabs in separate containers, to keep track of which crab molts when and also to prevent the crabs from ripping apart a freshly molted compadre, which they do with great enthusiasm. It is not unusual to see one or more of the inhabitants of the Sandy Seafloor tank missing a leg.

Here's one of Peter's tables containing crabs in baskets:

Individual red crabs (P. planipes) in separate baskets. 22 November 2016 © Allison J. Gong
Individual red crabs (P. planipes) in separate baskets, for their own safety.
22 November 2016
© Allison J. Gong

It's just as well that these guys have extraordinary regenerative capabilities, as they are eager to rip each other's legs off. With most crabs that I've observed in the lab limb regeneration is a gradual process, with the new leg growing a bit with each successive molt. Chelipeds, even with their increased size and complexity, seem to regrow faster than the other walking legs, likely reflecting their importance to the animal's lifestyle.

Pelagic crab (P. planipes) and its molt. 22 November 2016 © Allison J. Gong
Pelagic crab (P. planipes) and its molt.
22 November 2016
© Allison J. Gong

Peter told me last week that he'd seen one of his isolated crabs regenerate an entire cheliped with a single molt, going from nothing to an almost-full-size functional limb essentially overnight. This seemed very unlikely to me, but Peter said he'd seen the before (the empty molt) and after (the actual crab) together in the same container. Unfortunately the crabs end up demolishing and eating their molts within a couple of days, so the evidence doesn't stick around very long.

Sometimes, though, you get lucky. When I was at the lab yesterday morning Peter told me that he'd seen another of his crabs molt, and that it had grown a missing cheliped since the previous day. And this time he could show me the proof. Voilà!

A pelagic crab (P. planipes) with its molt. Note that the molt has only one cheliped, while the crab itself has two. 22 November 2016 © Allison J. Gong
A pelagic crab (P. planipes) with its molt. 
22 November 2016
© Allison J. Gong

Note that the molt has only one cheliped, the left, while the crab itself has two. How cool is that? The crab's right cheliped is a bit smaller than the left, as might be expected of a regenerating limb, but it's definitely intact and functional. It was pretty exciting to see evidence of wholescale limb regrowth taking place in such a short period of time, which must be incredibly energetically expensive. On the other hand, chelipeds are extremely important for defense, and there is obvious selective pressure to regrow them as quickly as possible should a crab be unfortunate enough to lose one.

Peter gave me permission to examine the molt more closely, so I took it back to the lab where the lighting is better. And surprise! The right cheliped apparently didn't grow from nothing overnight. If you look really hard at the photo above, you can just barely see a ghostly transparent sheath where the missing arm would be. Hmm. This was not at all what I expected. Did I really see that?

It turns out that, yes, that is exactly what I saw.

Ventral view of the right side of a molt of the a pelagic crab (P. planipes).
22 November 2016
© Allison J. Gong

See that translucent tiny limb up front? That's a little cheliped! And it had been there at least six months, as this crab's last recorded molt was in April. Why hadn't anyone seen it before? I think because this limb was so small that the crab kept it tucked underneath the carapace, where it wouldn't be seen from the dorsal (top) side.

In the course of one morning I got taken for quite a roller coaster ride. Peter reminded me that he'd seen a crab apparently regrow a missing appendage in a single molt cycle . . . and had just found a crab whose molt showed exactly that . . . and then that molt ended up including a claw after all. What fun!

Now, why is that little claw so transparent? An arthropod's exoskeleton is made of a material called chitin, with varying degrees of calcification depending on species. The large marine crustaceans (e.g., crabs and lobsters) have heavily calcified exoskeletons, while insects have much more lightweight, less-calcified exoskeletons. As a crab prepares to molt, one of the things its body does is resorb some of the minerals that it had deposited in the soon-to-be-discarded exoskeleton, so they can be re-used in the new one. If you find a discarded molt on the beach, pick it up and note how little it weighs; you'd be surprised at how flimsy it is.

Here's my hypothesis. I think that this little cheliped, because it was newly regenerated before this most recent molt, was only lightly calcified. The crab may have used it, but it wouldn't have been much use for defense. Then, the next time the crab molted the claw was shed along with the rest of the exoskeleton, and the limb was significantly larger. This crab now possesses a complete pair of chelipeds again. After examining the molt I returned it to the crab, which has probably torn it to pieces and eaten already. It's a way for the animal to recover some of the nutrients it allocated into building the exoskeleton in the first place.

Kind of a neat trick, isn't it?

ORGANISM OF THE MONTH: Pugettia producta, the kelp crab

For a few months now, I've had a pet kelp crab running around in one of my seawater tables. I don't remember where I collected it, or even whether or not I collected it at all; quite often crabs and other animals arrive as hitch-hikers on kelp that we bring into the lab to feed urchins, and I end up with many cool critters in my care that way. However she got here, this crab has been rather a pain in the butt during her stay with me. For at least a couple of weeks she got stuck in the drain of the table and would not come out despite three experienced marine biologists (including yours truly) trying to persuade her by altering water flow and offering food bribes. Then she disappeared from the table drain and I assumed that she had gone all the way through to the floor drain, where she could live quite happily for all eternity. Then she suddenly showed up again in one of my urchin baskets. When she came back up from the drain and how long she'd been hiding, I'll never know.

Wondering why I keep referring to this crab as "she"? It's because I know for certain that she's a female. Here's the secret to how you can determine the sex of brachyuran crabs (most of the common crabs: kelp crabs, shore crabs, rock crabs, even Dungeness crabs): You look at the shape of the abdomen, which is curved forward on the underside of the body. See here:

Abdomen of female Pugettia producta. 16 October 2015. © Allison J. Gong
Abdomen of female kelp crab (Pugettia producta)
16 October 2015
© Allison J. Gong

The abdomen is the broad flat upside-down-U-shaped panel that covers about half the width of the ventral surface. Female crabs brood their embryos under the abdomen, hence the broad shape. Male crabs of the same species have a much narrower, pointed abdomen.

Since her escapade with the drain the crab has been more, shall we say, co-operative. She's still free to scurry around at will in the table, but I haven't found her doing anything objectionable such as tormenting urchins or trying to get down the drain again. She has also been eating well.

Until this past week, that is. On Monday she accepted a piece of food but then abandoned it without even tasting it. On Wednesday she fled from the food, which I took to mean that she was getting ready to molt. Like all arthropods, crustaceans molt their exoskeletons every so often. The decapod crustaceans I'm most familiar with tend to off their feed for a few days before molting, and usually the actual shedding of the exoskeleton occurs at night. Then we show up the next day and voilà! like magic there's a new, bigger crab in the table.

Ms. Kelp Crab stopped eating on Monday of this week. Today (Friday) I didn't get to the lab until about noon, and one thing I noticed in the table was an empty carapace. Sure enough, she had molted. It took a little hunting to find the crab herself, but she wasn't really hiding and her new exoskeleton had already hardened. I'm pretty sure she'll eat on Monday.

Kelp crab (Pugettia producta) and carapace of its molted exoskeleton. 16 October 2015 © Allison J. Gong
Kelp crab (Pugettia producta) and carapace of her molted exoskeleton
16 October 2015
© Allison J. Gong

Living in a rigid exoskeleton means that a crustacean can increase in body size only in the time period between when an old exoskeleton is shed and the new one hardens up. I'm always curious about exactly how much crabs grow when they molt. So today I measured the crab and her old carapace at the same place, halfway between the two points on the lateral edges of the carapace. Huzzah for empirical data! The old carapace measured 27.6mm across, and the new one 33.8mm, for an increase in width of 6.2mm or 22.5%. Mind you, this is simply the increase in one linear dimension of the crab's body. To obtain a more accurate measurement of body size increase, I'd have to have weighed the crab immediately before her molt and after it. Still, it does give an estimation of how much bigger a body part can get when a crab molts.


The Seymour Marine Discovery Center, where I spend some time hanging out several days a week, has a spiny lobster (Panulirus interruptus) on exhibit. While the lobster doesn't have an official name, for obvious reasons the aquarists call it Fluffy. We don't know if Fluffy is male or female, but for convenience sake we've been referring to it as 'he' which may or may not be sexist, depending on one's point of view. Fluffy came to the Seymour Center as a full-grown adult in September (I think) of 2012 and has molted every year close to the anniversary of his arrival.

Fluffy, the spiny lobster (Panulirus interruptus) on exhibit at the Seymour Marine Discovery Center. 7 September 2015 © Allison J. Gong
Fluffy, the spiny lobster (Panulirus interruptus) on exhibit at the Seymour Marine Discovery Center.
7 September 2015
© Allison J. Gong

Fluffy's latest molt occurred some time between Saturday afternoon and this morning, probably in the dark of night. The molt remains in the tank, to show visitors what happened.

Spiny lobster (Panulirus interruptus) on the right and its molt. 7 September 2015 © Allison J. Gong
Spiny lobster (Panulirus interruptus) on the right and its molt on the left.
7 September 2015
© Allison J. Gong

Being encased in a rigid exoskeleton, all arthropods grow in stepwise fashion, increasing in size only during that brief period between when the old exoskeleton has been shed and the new one has hardened. Once they reach full adult size they may continue to molt yearly, but no longer grow. Fluffy's exoskeleton may be hard by now, and to the naked eye he doesn't look any larger than he was before. Then again, if he was already full-grown when he came here, I wouldn't expect him to grow much, if at all.

When crabs and lobsters molt, the old exoskeleton splits apart at the junction between the carapace and abdomen. The animal slips out backwards through the split, leaving the entire covering of its body behind. Before molting the lobster's epidermis would have resorbed some of the minerals from the old cuticle, and what is left behind is much thinner and more fragile than it was when the animal was wearing it.

Molted exoskeleton of a spiny lobster (Panulirus interruptus). 7 September 2015 © Allison J. Gong
Molted exoskeleton of a spiny lobster (Panulirus interruptus).
7 September 2015
© Allison J. Gong

In the photo above you can see the split between the carapace and abdomen. I think it's amazing how the legs, eye stalks, and antennae can slip out of the old cuticle without being broken or damaged. However, until the new exoskeleton has fully hardened the animal is vulnerable and usually hides out for a few days. Fluffy may not eat until tomorrow or the next day. One interesting note. A lobster's gills, being external structures, are covered by a thin layer of cuticle and are molted along with everything else. If you come across a recent crab molt, lift up the carapace and you might be able to see where the gills are located. How cool is that?

%d bloggers like this: