Skip to content

At ~05:00h UTC on 15 January 2022, the Hunga Tonga Hunga Ha'apai undersea volcano erupted. The eruption was probably followed by a massive undersea landslide, which set tsunami waves out across the Pacific Ocean. This time translates to ~21:00h PST on Friday 14 January, and for the rest of this entry all times and dates will be reported in California time. The eruption and landslide happened in the early morning in Tonga, which was the previous evening here in California.

I woke up on Saturday 15 January (yesterday, as I write this on the 16th) to reports of tsunami warnings for the entire Pacific coast of North America. The first waves were expected to hit the Monterey Bay area around 07:30h. Knowing that we are in spring tides now and that the low low tide (LLT) would be at 15:35h, I back-calculated the preceding high tide (the high high tide, or HHT, for the day) to be around 08:30h. Hmm. High tide plus tsunami surge could equal interesting things to see! And yes, as we were warned not to go down to the ocean, I planned to remain above it all and observe from the bluffs.

What the instruments measured

The volcano erupted first, and caused the landslide. When the massive displacement of water occurred in the ocean, it sent pressure waves through both the ocean and the atmosphere. But before that, the volcanic explosion itself created a pressure wave in the atmosphere. And it happens that the barometer in our weather station caught the pressure anomaly! At 04:04h on 15 January, about seven hours after the eruption, the weather station measured a spike in atmospheric pressure (circled in red in the bottom panel). Our weather station records pressure only every five minutes, so the actual spike may be a bit higher than what was recorded.

Spike in atmospheric pressure, measured by home weather station
Spike in atmospheric pressure, measured by our weather station in Santa Cruz, CA

The National Oceanographic and Atmospheric Administration (NOAA) has tsunami stations established on the entire coast of the U.S., as well as earthquake monitoring stations elsewhere along the Pacific ring of fire. The tsunami station at Monterey measured sea level anomalies due to the tsunami waves striking the coast, starting at about 07:00h, as seen below.

This kind of chart is a little different from what you're probably used to, so let me explain what it shows. You have time and date along the X-axis. The blue line, which is hard to see because it is mostly obscured by the red line, is the predicted sea level; note that it follows the usual trajectory for the tides we have in this area, with two high tides and two low tides every day. The jagged red line is the interesting part. It shows the anomalies, or how the actual sea level deviates from the predicted sea level. There are both positive and negative anomalies. These anomalies are the tsunami surges that hit the monitoring buoy. Positive anomalies are the pressure waves striking the buoy (i.e., the crests of the wave), and negative anomalies are the pauses between surges, or the troughs of the wave. The first large anomaly was about 0.7 meters above the predicted sea level.

Imagine tossing a pebble into a calm pond. When the rock hits the water it sets up a series of pressure waves that emanate in all directions from the point of impact. If you watch those waves, or ripples, you notice that over time they diminish in size until eventually you don't see them anymore.

A tsunami is a similar phenomenon, only ginormously magnified. The underwater landslide displaces a huge amount of water, which then surges away in all directions. These tsunamis travel across thousands of kilometers of open ocean, where they may not make much difference in sea level. But as they approach land they behave like other waves do: they slow down and get taller. When they hit the continental shelf, they surge up coastal waterways and flood any low-lying land they encounter.

And there isn't only one surge. As you can see in the NOAA chart, surges and relaxations occurred throughout the entire day. The purple line indicates the same anomalies as the red line, only they are shown on a single horizontal line instead of on the wave of the blue line. This makes it easier to see how the magnitude of the deviations decreases over time.

What I saw

Double-checking the NOAA tide chart for Santa Cruz, I saw that the HHT would be +1.7 meters at 07:59h. I managed to get myself down to the marine lab, do my chores, and scurry out to Younger Lagoon at about 08:45h. Don't worry, I didn't have time to go down onto the beach, but watched events from the bluff, where I had a better view anyway. Remember, we had a high tide coinciding with the oncoming tsunami surge, so the potential was there for something interesting to happen. Now, a +1.7 meter (= 5.5 feet) isn't an extremely high tide. But combined with a tsunami surge, maybe that would be enough to flow over the sand berm into the lagoon.

And that's what happened. From my position on the bluff I recorded this video:

And here's my nature journal entry:

© Allison J. Gong

Things were pretty exciting at the Santa Cruz Small Craft Harbor, too. All day, people were recording the tsunami surges as they rushed up the harbor from Monterey Bay. Unlike the tsunami in 2011, which tore up both docks and boats, causing extensive damage, yesterday's tsunami was quite mild. I had already made plans for the day and didn't get down to the harbor to check out the action until late in the afternoon. My friend, Murray, built a little boat, Scherzo, who lives in the upper harbor. Scherzo didn't exist in 2011 so we don't know how she would have weathered things. She was floating happily when we went to see her yesterday, although she did seem to be sitting rather low in the water. She probably took on water over her transom during the biggest tsunami surges.

Scherzo is the sleek little craft on the near side of this dock. She is blue with a white cover.

Murray's little boat, Scherzo, in her slip at the Santa Cruz Small Craft Harbor
© Allison J. Gong

The harbor patrol had blocked access to the docks so they could inspect them for structural damage. I assume, but don't know for sure, that slip renters were able to check on their boats today.

We were at the harbor at 16:30h yesterday. Sea level was still noticeably rising and falling, and even a minute of watching was rewarded with fairly drastic changes. Since we were not allowed onto the docks I was unable to record good footage of how quickly water was moving in the main channel. However, in the side channel where Scherzo is tied up we could watch the water drain. In this video, keep an eye on that rock that looks like a shark fin, near the middle of the frame.

What other people saw

In one of those inevitable consequences of any public safety announcement, the effect of a tsunami warning is to attract people to the beach. I know that many surfers headed out to surf the tsunami, and a lot of people recorded the tsunami from bridges and other places. Here are just a few of the YouTube videos showing the tsunami in the Santa Cruz area.

Video #1: Drone footage of the tsunami pushing into the mouth of the harbor and up the main channel. You can clearly see the green water from Monterey Bay pushing its way through the muddier water of the harbor itself. And the poor dredge sure did take a beating!

Video #2: Tsunami waves heading up Soquel Creek, which opens to Monterey Bay

Video #3: Cars floating at the upper harbor parking lot. I think a lot of this water came up through the storm drains, rather than flowing from the harbor onto the sidewalk and roadway.

Video #4: This video was shot from the Murray Street bridge, looking south at the lower harbor.

Video #5: This footage was shot at the upper harbor, near the dock where Scherzo lives.

So yeah, things were pretty exciting here. But the important thing to remember is that what was a source of entertainment and mild concern here in California, caused tremendous damage in Tonga and neighboring islands. Volcanic ash is settling over the island to the depth of several centimeters, fouling fresh water supplies. The ash is also clouding the air and darkening the sky. Communications have been disrupted, and it is unknown how many casualties resulted from the eruption and ensuing tsunami. Australia and New Zealand have begun deploying aircraft to assess the damage, but it will be a while before we know how bad things really are. Drinking water does seem to be the most pressing need for Tongans and inhabitants of other affected islands.

I imagine that in the coming days there will be opportunities for us to help those who need it. If you can contribute, please do so.

Over the past couple of weeks I've rented two super telephoto lenses, to see what all the hype was about. I mean, do I really need 500 or 600mm of reach? I had read up on the specs of such lenses, and one major drawback is the weight—1900 grams or more. Would I be willing to lug a beast like this around, and would I be able to use it effectively? You never know until you try, so I rented them. And, of course, it was foggy both weeks so I didn't have much opportunity to take decent photos. But since the entire point of renting the lenses was to see if I could use them at all, that was fine.

As part of the test-drive for the second lens, I went up to Waddell Beach to see if there would be any birds to photograph. It is migration season, and our winter residents will be arriving soon. Some of them, such as the red-necked phalarope, have shown up at Younger Lagoon over the past four weeks or so. It was really foggy at Waddell, remember, and I didn't have much hope of seeing anything remarkable. There were some gulls and whimbrels off in the distance. But it turned out that the stars of the show were blackbirds!

They were hard to miss, because there were 50-60 of them and they were hopping up and down like jumping beans.

This is a mixed flock of Brewer's blackbirds (Euphagus cyanocephalus) and red-winged blackbirds (Agelaius phoenicius). The glossy greenish-black birds are the male Brewer's blackbirds, and most of the brownish birds are female Brewer's blackbirds. Since both sexes were doing the hopping, I didn't think this behavior had to do with courtship or mating.

So yes, while most of the birds seemed to be Brewer's blackbirds, I did hear the liquid gurgling of the red-winged blackbird's song coming from somewhere in the flock. When I got home and looked at the photos on the big monitor, I did see some red-winged blackbirds. Here's a male, surrounded by other males red-wingeds and both female and male Brewer's blackbirds.

Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
© Allison J. Gong

In this photo above the black birds are male Brewer's blackbirds. The brown birds without faint wing bars are female Brewer's blackbirds, and the brown birds with the wing bars are male red-wingeds. There were no female red-winged blackbirds in any of my photos. According to an article from Cornell's Bird Academy, the males spend the weeks leading up to springtime competing for territories, and when the females return from their winter migration they will choose mates based partly on the quality of the territory. Mid-September is too early for this kind of competition, though. We are just about up to the autumn equinox, but not near winter quite yet.

Back to the hopping. There's a clue in this photo about what I think was going on:

Male Brewer's blackbird (Euphagus cyanocephalus) at Waddell Beach
© Allison J. Gong

See that little fly? There were many such flies, most of which were lower on the beach gathering around the kelps and other wet detritus that had washed up. There were fewer flies up where the driftwood accumulates, though. Once again, it wasn't until I saw the pictures on my big monitor that I could figure out what those blackbirds were doing. They were hopping up to eat flies!

Here's a series of shots showing one of the male red-wingeds in mid-hop.

  • Looking up, just before the hop:
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
© Allison J. Gong
  • Up he goes! See the very edge of the red epaulette on his right wing? And all those flies?
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
© Allison J. Gong
  • Is he going to catch something?
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
© Allison J. Gong
  • Maybe?
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
© Allison J. Gong
  • After all that, I'm not at all sure if he actually got anything!
Male red-winged blackbird (Agelaius phoenicius) at Waddell Beach
© Allison J. Gong

I don't have any hard evidence that the blackbirds (both Brewer's and red-wingeds) are catching flies. And while I was at the beach watching them hopping up and down I had no idea what they were doing. However, now that I've seen the flies in the photos, it makes sense that the birds would be hopping up to catch and eat them, especially since both sexes of the Brewer's blackbirds were doing the same thing.

So that's what was hoppening at the beach!

Sometimes even a well-known site can present a surprise. Here's an example. Yesterday I went up to Davenport to scope things out and see how the algae were doing. This is the time of year that they start growing back after the winter senescence. I also took my nature journal along, hoping to find a spot to sit and draw for a while.

The first thing I noticed was the amount of sand on the beach. Strong winter storms usually carve sand off the beaches, making them steeper. And during the calmer months of summer the beaches are flatter and less steep. Yesterday the beach was very thick and flat. It makes trudging across the sand in hip boots much easier!

The accumulation of sand meant that I could walk around the first point. Unless the tide is extremely low, such as we see around the solstices, the water is too deep for that. But yesterday I walked around it, and it wasn't until I got to the other side that it occurred to me that: (1) hey, I walked around the point; and (2) I could do that only because there was so much sand. See, a thick beach with a lot of sand makes a mediocre low tide feel lower because the water isn't as deep as it would be if the beach were thinner. When the tide isn't low enough for me to walk around the point, I have to clamber down a cliff. The cliff height varies depending on how much sand has built up, obviously, but is about head height for me. Getting down usually involves scooting on my butt and hoping my feet land on something that isn't slippery. As with most climbing, up is easier and less scary than down.

It's hard to imagine the amount of sand there was yesterday. Look at this picture.

Flat rock area and sandy area
North of Davenport Landing Beach
© Allison J. Gong

See how the rocks in the foreground end? Usually that's the edge of the cliff. Yesterday I could have just taken a tiny step off the top of the cliff onto sand. That's over 1.5 meters of sand in that one spot! If the couple in the background were visiting this area for the first time, they'd have no idea of the conditions that made it so easy for them to get out onto the reef.

There was a lot of sand in the channels between rocks, too.

Sand between rocks in the intertidal
Intertidal area north of Davenport Landing Beach
© Allison J. Gong

Normally those channels are deeper. You can see that some anemones were able to reach to the surface of the sand, but many more are buried, along with any other critters and algae unfortunate enough to be attached to the lower vertical surfaces. And while some of them will either suffocate or be scoured off as the sand washes away, many will survive and be ready to get on with life.

The second surprise of the day was a bright orange object. What I could see of it was about as big as my thumb, and at first I thought it was a nudibranch. Then when I crept closer for a better look, what popped into my head was "snailfish". Which was an odd thing, because I'd never seen a snailfish before. But something about the creature's posture looked somehow familiar.

Orange fish with large head and tail wrapped around the body
Tidepool snailfish (Liparis florae) at Davenport Landing
© Allison J. Gong

Fortunately I had the presence of mind to take photos before trying to draw this little fish, because this is all I had time to get:

When I spooked the critter it took off really fast, confirming that it was no nudibranch. It was, indeed, a snailfish! It came to rest in a small hole in a rock, from where it looked out at me.

Tidepool snailfish (Liparis florae) at Davenport Landing
© Allison J. Gong

The snailfishes are a very poorly studied group. As a group they are related to the sculpins. There are snailfishes throughout the northern temperate and polar regions, from the intertidal to the deep sea. iNaturalist shows 43 observations of L. florae, eight of which are in California. Before yesterday, none had been recorded at Davenport Landing.

Map of northeast Pacific coast, showing sighting of tidepool snailfish recoreded in iNaturalist
Observations of tidepool snailfish (Liparis florae) recorded in iNaturalist
© iNaturalist

So there you have it, a snailfish! We don't know much about any of the snailfish species, even the intertidal ones. They apparently have pelvic fins modified to from a sucker, similar to the clingfishes, but I didn't have a chance to examine this specimen closely enough to confirm that. I don't know why they are called snailfishes, either. They're not snail-shaped at all.

Now, about that thing up there where I said "snailfish" came to mind even though I'd never seen one before. That happens quite a bit—a name will jump into my head before I've had a chance to think about it. Sometimes I'm wrong, but often I'm right. I know I hadn't seen a live snailfish before, but obviously I'd seen photos of them or I wouldn't have been able to recognize this orange creature as being one. It's fascinating how the brain forms search images, isn't it?

During what has become my daily check to see what's going on in Younger Lagoon, I got totally lucky and was able to see and photograph lots of birds. A morning with mostly cloudy skies meant good light for picture-taking. So I took lots of pictures! Some of these are series and need to be viewed in order to see the action. Sure, I could have just shot videos, but where's the fun in that? Sometimes still photos show a lot more than video.

It was a great day to watch wading birds! Legs and beaks come in varying lengths, and a particular species' combination of beak length and leg length determine where and how the bird forages.

Long-billed curlews, snowy egret, and marbled godwit on the beach at Younger Lagoon
Shorebirds at Younger Lagoon. Left to right: Two Long-billed curlews (Numenius americanus); snowy egret (Egretta thula); long-billed curlew; marbled godwit (Limosa fedoa)
© Allison J. Gong

While the long-billed curlew (N. americanus) has the longest beak-length-to-head ratio of any bird, the marbled godwit and whimbrel also have impressively long bills. In the photo below, the three birds with slightly downcurved beaks are whimbrels (Numenius phaeopus) and the one bird with the two-toned straight beak is the godwit (Limosa fedoa). Most of the godwits I've seen have beaks that are a smidge upturned, but this one looks pretty straight to me.

Whimbrels and marbled godwits in the surf zone at Younger Lagoon
Shorebirds at Younger Lagoon. Three whimbrels (Numenius phaeopus) with downcurved beaks and one marbled godwit (Limosa fedoa) with straight beak
© Allison J. Gong

All of these birds forage by probing the sand with their beaks. All sorts of infaunal invertebrates are taken, and the mole crab Emerita analoga is a favored prey item. Obviously a longer beak allows for deeper probing in the sand, and the variation in beak lengths among the shorebird species may allow for niche partitioning. In other words, a long-billed curlew can reach down for prey items that are unavailable for birds with shorter beaks. The flip side of this equation is that birds with the "short" beaks might be better at picking up prey buried that are buried at shallow depths.

Prey are also distributed patchily along the beach itself, from the surf zone to the dunes, and these birds forage in the entire range. The length of the legs determines how far down into the surf zone they can go. When the beach is steep, as it is now at Younger Lagoon, the birds don't have much time to dig around in the surf zone before the next wave comes up. Click through the slide show to see this group of godwits, curlews, whimbrels, and a snowy egret react to an oncoming wave. It's important to note that while these birds do have some waterproofing in their feathers, they do not swim. Nor can they take flight if their feet aren't on the ground. Getting swept up by a wave and carried off the beach would likely be deadly for them.

The long-billed curlew is a favorite of mine, because I can't imagine what it would be like to go through life with a 2-meter beak sticking out of my face. They are fun to watch, and can probe remarkably fast with that long beak. This is one of the phenomena that is best shown by video.

You can watch how the birds forage within the surf zone, as in the slide show above, and also how long-billed curlews probe the sand higher up the beach.

Shorebirds foraging at Younger Lagoon
© Allison J. Gong

These long-legged wading birds also feed in protected bodies of water and estuaries. All of these species can be seen at Elkhorn Slough as well as on the open coast, as one would expect from the Slough's position along the Pacific Flyway. Some birds migrate to California from far away. Marbled godwits, for example, spend the summer breeding season in the interior regions of North America, and winter along the Pacific, Gulf of Mexico, and Atlantic coasts. The long-billed curlew also breeds in the interior of the continent. Snowy egrets, on the other hand, are year-round residents.

I am grateful to have access to places like Younger Lagoon, where I can spend time outdoors without other people around, remove my mask, and take pictures of birds. I love that the Younger Lagoon Reserve has so many different habitats to explore, from ocean to beach to dunes to coastal scrub, in a small area. Fingers crossed that sooner rather than later, we'll be able to once again bring students there to study the natural world in the Reserve's outdoor classrooms.

In terms of weather, this has been the first real week of winter we've had so far this season. But finally we're getting some action from an atmospheric river, and it is bringing both much-needed rain and the threat of mudslides in mountain regions that were badly burnt just a few months ago.

Graphic showing what atmospheric rivers are and how they affect precipitation

During an El Niño event, the probability of higher-than-average rainfall in California is usually due to what are called Pineapple Express storms. These warm, wet storms occur when the atmospheric river is to the south and picks up and transports water from the tropics. La Niña, which is the counterpart to El Niño, typically results in drier-than-average conditions in California, but when the atmospheric river does come into play it comes from the north and is cold.

We are currently at the mercy of La Niña, and weather forecasters predict these conditions will continue through February and then begin to wane through the early spring. This means that the storms we've had over the past several days have been cold. According to our weather station, on Monday 18 January the high temperature was 24ºC (75ºF), and a week later on Monday 25 January the high was 12ºC (53ºF). It has continued to be chilly throughout the week. Today, Friday 29 January, we're getting a break between storm systems and it's beautifully sunny. Because of the sun it feels warmer, but the actual air temperature probably won't get much higher than it has been already this week.

Yesterday we were hit by what was probably the strongest of the storms in this particular atmospheric river. At the marine lab the waves were routinely splashing up and over the cliffs. When that much water crashes into solid land, the pounding is felt as much as it is heard. After doing my chores I wandered over to Younger Lagoon to see what was going on. I wanted to see if the lagoon had broken through the sand bar.

I spent some time watching the ocean, and this is what I saw:

Storm waves at Younger Lagoon

That sand bar forms as sand accumulates on the beach during the summer, following the typical sand cycle along the California coast. Younger Lagoon does not drain a river, so there is not a constant flow of fresh water down to the ocean. There is some run-off from the surrounding agriculture fields, but the vast majority of water flowing through the lagoon is run-off from rain. It's that heavy flow of fresh water that sometimes breaches the sand bar and allows water from the ocean to mix with water in the lagoon.

Given how much rain we'd had, I thought it likely that the lagoon would have breached. But as you can see from the video above, it had not. Clearly, there hasn't yet been enough fresh water flow through the lagoon to break through the sandbar.

So we're still waiting for that event. I suspect that once it does, we'll know because of the smell.

In the meantime, the ocean continued to pound the coast. I was wearing my foul weather gear so I went to Natural Bridges to watch the waves slam against the rock formations. That was a fun excursion! The big swells were coming in so fast that the deep BOOM-BOOM-BOOM was almost continuous. Close to shore the water was a constant froth of movement.

Storm waves at Natural Bridges

You can see how high the waves were hitting against the cliff. The mist blew quite far across the parking lot, and I went home with saltwater drying in my hair. Fortunately I got to spend the rest of the day indoors, drinking tea and keeping dry. Winter storms are great fun, as long as you don't have to be out in them!

Still more or less under quarantine shutdown due to COVID19, I haven't been doing much outdoor stuff over the past several months. What with the pandemic and horrid air quality due to wildfires throughout the state, spending time in places I would normally like to hang out simply hasn't been possible. We're still getting too many out-of-the-area visitors for me to feel comfortable being around people, and weekends are especially bad. But last weekend I went to Moss Landing to take pictures of birds and other wildlife—I needed visual aids for a virtual lab my students will be doing in a few weeks.

It's the time of year for birdwatchers to get excited about winter visitors. I've had golden-crowned sparrows in the canyon behind the house for almost a month now, but I hadn't been down to a beach in a while. Moss Landing is a great place for birdwatching, because you can explore the estuarine habitat of Elkhorn Slough, the sandy beach, and the harbor during a 2-mile walk. That's three distinct habitats for very little effort!

Starting at the tidal marsh, I always keep an eye out for the long-billed curlew (Numenius americanus). They have the largest beak-to-head ratio of any bird.

Long-billed curlew (Numenius americanus) in salt marsh
Long-billed curlew (Numenius americanus)
© Allison J. Gong

One of my favorite winter visitors to the marsh area is the willet (Tringa semipalmata). Unlike most shorebirds that are speckled or mottled, willets in winter plumage are a beautiful soft gray-ish brown color. Every time I see a willet I ask myself, "Willet, or won't it?"

Willets in marsh at low tide
Willets (Tringa semipalmata)
© Allison J. Gong

And when they take off in flight, willets show these striking black and white wing patterns. They always take me by surprise, even though I know to expect it.

Willet in flight, showing white flashes on wings
Willet (Tringa semipalmata) in flight
© Allison J. Gong

A whole flock of willets taking off at once is quite an impressive sight!

Flock of willets in flight
Willets (Tringa semipalmata) in flight
© Allison J. Gong

From the marsh it's a short walk over the dune and onto the beach.

I always look forward to walking this beach because of the dead things. Don't get me wrong, the living things are fun to see, but in some ways the dead critters can be more informative. For every species there is always some baseline level of mortality in the ocean, so you expect a certain number of dead things to wash up. However, an unusually high number of corpses could indicate that something is going on at sea. This trip I didn't see very many dead critters: just a few grebes that had been there for a while, nothing out of the ordinary.

Oh, and an otter pup. At least, I'm pretty certain it was an otter.

Yes, we came across a dead sea otter pup, my first ever.

Dead sea otter pup on the beach
Dead southern sea otter (Enhydra lutris nereis) on the beach
© Allison J. Gong

The body was missing a head, but the parts that remain were a bit longer than my booted foot. Although most of the soft tissue had been scavenged, the carcass had distinct paws, meaning it wasn't any kind of pinniped (seal or sea lion). Also, pinnipeds don't have fur like this, as they rely on blubber for thermoregulation. Sea otters, on the other hand, have the densest fur of all mammals, with the oft-cited 1 million hairs/in2.

But let's be honest. I like the beach because I like photographing birds, and there is always interesting bird life at this beach. I'm not one of the crazy bird people who keep a life list and need to be the first person to spot a particular something-or-other. And, unlike the idiots I saw tramping through the pickleweed in pursuit of a Say's phoebe that day, I don't climb over fences and trespass where I'm not supposed to be. Besides, even the everyday backyard birds are fun to watch. Whoever says that familiarity breeds contempt certainly is not a naturalist!

And who doesn't love a snowy plover or two?

Snowy plovers (Charadrius nivosus)
© Allison J. Gong

The snowies aren't nesting at this time of year so the upper part of the beach isn't roped off. They do still get disturbed by people wandering around, who probably don't even know the birds are there. They (the snowies, that is) are so tiny that when they hunker down behind a divot in the sand they disappear completely. If you sit or stand quietly, they will pop up and make short dashes from hillock to pile of beach wrack and back again, feeding on the insects and crustaceans they find.

In addition to the snowy plovers, another tiny "peep" bird runs around on the beaches, often in large groups. These are the sanderlings, Calidris alba. I've only ever seen them in nonbreeding plumage, as they nest in the high Arctic.

Sanderlings (Calidris alba)
© Allison J. Gong

Sanderlings are the little birds that run back and forth from the waves. As a wave recedes the sanderlings frantically stab their stout beaks into the sand, grabbing up small mole crabs and other crustaceans that are right at the surface. When the next wave arrives the sanderlings run back up the beach. They have short legs and don't swim, so getting swept out to sea would be a very bad thing for them.

Sometimes even the long-legged shorebirds forage on the beach. I've seen the curlew there, as well as whimbrels and godwits. This day the godwits were stealing the show.

Marbled godwits (Limosa fedoa)
© Allison J. Gong

The godwits, with their longer legs, are able to stand their ground when the waves wash up. They can catch food that is buried more deeply into the sand. On mudflats they pick their way over the flat at low tide, digging for worms, clams, and crustaceans. They can feed on a mudflat only at low tide. But on the beach they can feed at any time, just moving with the tide as it floods and ebbs.

And my friend the long-billed curlew was there on the beach, too!

Long-billed curlew (Numenius americanus)
©Allison J. Gong

The curlews are not as eager to forage in the waves themselves as the godwits seem to be. The curlews might wander down to where their ankles are swashed by the waves, but do not seem to like getting wetter than that. But that bill can probe very deeply into the sand or mud. I've watched them feeding on mole crabs on the beach, and on worms on the mudflats.

Autumn and winter are good times to watch birds around here. There's a bit of a lull in bird activity once the swallows leave depart for the south and before the winter residents show up. For me, autumn begins when the golden-crowned sparrows arrive in the neighborhood, which this year was September 25. I'm listening to them now as I write this! Being located on the Pacific Flyway means we get lots of birds resting for a bit on their migration even if they don't winter here. I'll try to get out to Moss Landing during the winter months, to keep track of the avian comings and going.


The first field trip of the semester for my Ecology class is always a jaunt up the coast to Rancho del Oso and Waddell Beach. It's a great place to start the practice of observing nature, because we can explore the forest in the morning, have lunch, and then wander along the beach in the afternoon. We really are lucky to have such a wide variety of habitats to study around here, which makes taking students out into the field really fun. My passion and expertise will always belong with the marine invertebrates, but it's good for me to work outside my comfort zone and immerse myself in habitats I don't already know very well. During this year's class trip to Waddell Beach I was struck by some things I had seen before but never paid much heed to. And also one very big thing that caught everybody's attention.

Depending on how much rain has fallen recently, Waddell Creek may or may not flow all the way into the ocean. Since California has a short rainy season, there are months when the creek is completely cut off from the ocean, due to both a lack of flow and the accumulation of sand on the beach. So far this rainy season, which began on 1 October 2019, we've gotten about 93% of our normal rain. However, we had a very wet December, and almost no rain since then. I wasn't sure whether or not Waddell would be flowing into the ocean. It was.

Waddell Creek where it flows across the beach into the Pacific Ocean
Waddell Creek flowing into the Pacific Ocean
© Allison J. Gong

The really big thing that we all stopped to look at was this guy lounging in the creek.

Subadult male elephant seal (Mirounga angustirostris) lying in the creek at Waddell Beach.
Northern elephant seal (Mirounga angustirostris) on Waddell Beach
© Allison J. Gong

The students had many questions: What was he doing there? Was he sick? Was it a male? Was he dead? Well, no, he wasn't dead. And while I guessed from this view that it was a subadult male, I was secretly relieved to be proved right when we walked down the creek (keeping the mandated distance away from him) and looked back to see his big schnozz.

The elephant seal breeding season is coming to an end, but animals will continue to haul out and rest on the beach. This subadult male clearly isn't going to be dethroning any beachmasters this year, so he has taken the safe route and chosen a beach away from the breeding ground at Año Nuevo, which is ~2 miles up the coast. What I really liked about this particular animal was that we could see the tracks he made getting himself up the beach to the creek.

So that was the big thing. Eye-catching he certainly was, but to my mind not nearly as interesting as the small things we paid more attention to on the beach. It is tempting to think of sandy beaches as relatively lifeless places, compared to something like a rocky intertidal or a redwood forest. But for some reason, this trip I became intrigued by the dune vegetation. At first glance a sand dune seems to be a very inhospitable place for plants, and it is. Sand is unstable and moves around all the time, making it difficult for roots to hang on. Sand also doesn't hold water, so dune vegetation must be able to withstand very dry conditions. It's not surprising that dune plants have some of the same adaptations as desert plants.

Let's start with the natives.

Photograph of yellow sand verbena (Abronia latifolia) at Waddell Beach.
Yellow sand verbena (Abronia latifolia)
© Allison J. Gong

I love this little sand verbena (Abronia latifolia)! It is native to the west coast of North America, from Santa Barbara County to the Canadian border. It is a sand stabilizer, decreasing the erosion that occurs. The sand verbenas also live in deserts; I saw them at Anza-Borrego and Joshua Tree last year. The beach sand verbena grows low to the ground, probably as a way to shelter from the winds that come screaming down the coast. Cute little plant, isn't it?

The other yellow beach plant we saw was the beach suncup (Camissoniopsis cheiranthifolia), a member of the primrose family.

Photograph of the beach suncup (Camissoniopsis cheiranthifolia) at Waddell Beach.
Beach suncup (Camissoniopsis cheiranthifolia)
© Allison J. Gong

Like the yellow sand verbena, the beach suncup is a California native. It grows along the entire coast, including the Channel Islands. Also like the yellow sand verbena, the suncup grows low to the ground. Its leaves are thick and a little waxy, to help the plant resist desiccation.

And now for the non-natives. I must admit, I had given very little thought to the plant life on my local beaches. I'd seen and studied beach wrack, but to be honest most of my attention is usually directed towards the water instead of up high on the beach where the plants live. This day I decided to photograph the plants.

This plant is a little succulent called European sea rocket (Cakile maritma). As the common name implies, its native habitat is dunes in Europe, northern Africa, and western Asia.

Photograph of the succulent plant, European sea rocket (Cakile maritima) at Waddell Beach.
European sea rocket (Cakile maritima) at Waddell Beach
© Allison J. Gong

Cakile maritima has several life history traits that enable it to be carried around the world. It produces a lot of seeds, more so than the native dune plants. The seeds are dispersed by water and can be transported long distances in the ballast water of ships, which is probably how it got to California in the first place. It tolerates disturbances better than native dune vegetation, which allows it to be a superior competitor. Cakile maritima is considered to be invasive, meaning that it can survive and spread on its own in a non-native habitat, but its effects seem to be restricted to beach dunes. Despite its ability to thrive and outcompete our native beach plants, it appears to be unable to expand away from the sand.

Mushrrom, Psathyrella ammophila, growing out of the sand at Waddell Beach.
Psathyrella ammophila at Waddell Beach
© Allison J. Gong

Our surprise of the day was a beach mushroom! None of us had seen them before. This is Psathyrella ammophila, the beach brittlestem mushroom. Like sea rocket, it is also a European invasive. We were perplexed by this mushroom. Most of a fungus's body (mycelium) is underground. The mycelium spreads through soils as very thin threads called hyphae. Every once in a while the mycelium sends up a fruiting body, which is what we call a mushroom. There is no way to know, from the location of mushrooms, where and how far the mycelium spreads underground.

The presence of a mushroom on the beach means that a fungal mycelium is feeding on something in the sand. There isn't much plant matter buried on beaches, but we hypothesized that perhaps one of the logs from the forest had washed down the creek and been deposited on the beach. It would then be buried in sand, along with all the mycelium it carried, and a mushroom could have sprouted up through the sand.

Well, it was a good hypothesis.

I posted my photo to a mushroom ID page, and it was identified as Psathyrella ammophila. My submission to iNaturalist came back with the same result. A little research led me to another non-native invasive species, Ammophila arenaria, the European marram grass. Notice that the species epithet of the mushroom is the same as the genus name of the plant? That was my first clue. Marram grass is one of the most noxious weed species on the California coast. It was intentionally introduced to the beaches in the mid-1800s, to provide stability to the dunes. It is very good at that, but also spreads very rapidly, usually growing upwards away from the ocean. That said, marram grass also breaks off chunks that can survive in the ocean and float off to colonize new beaches.

The fungus Psathyrella ammophila grows as a saprobe on the decaying roots of Ammophila arenaria. No doubt the fungus was introduced along with the marram grass as an inadvertent hitchhiker. Since there is so much marram grass on our beaches, it's safe to assume that there is a lot of Psathyrella, too. That means it's time to start looking for mushrooms on the beach!

%d bloggers like this: