Skip to content

3

Yesterday I had the great fortune to visit a new intertidal site. It can be accessed only by crossing private property. The property owner is my next-door neighbor, and he said I can visit any time. As I said, lucky me! The site is a little north of Pigeon Point, and at first glance the terrain is not very different from Pigeon. But I could tell that it a site that is rarely, if ever, visited by humans. It just had that look of being mostly undisturbed. Yesterday's marine layer was low, making for dark skies and pretty lousy light for picture-taking, so I had to try something new.

This site has a lot of lovely pools and channels to explore, and at this time of year the water is very clear, which does make for good picture-taking. Halosaccion glandiforme, one of the charismatic red algae, is more abundant here than at other sites, and in the pools it grows quite a bit taller than it does on the rocks.

Here's what it looks like on the tops of the rocks. This is a cluster of young thalli. The tallest of these "bladders" is about 4 cm tall. Note that they are about 2/3 full of water, with a large air space at the top.

Many olive-green spherical and ovoid bladders, attached to rock.
Young Halosaccion glandiforme thalli along the San Mateo County coast
2022-08-14
© Allison J. Gong

The really cool thing is what happened when I stuck the camera in the water and took a shot. I got something like this:

Two elongate olive-green bladders, filled about 2/3 with water, submerged in a tidepool
Halosaccion glandiforme and other algae submerged in a tidepool
2022-08-14
© Allison J. Gong

I got a little carried away. But don't things look interesting from the turban snail's perspective?

Olive-green towers rising from a carpet of pink algae. A black snail is nestled between a trio of the towers.
Halosaccion glandiforme and a black turban snail (Tegula funebralis) in a tidepool
2022-08-14
© Allison J. Gong

I'm kind of enraptured by these towers of algae.

Olive-green towers rising from a carpet of pink algae.
Halosaccion glandiforme in a tidepool
2022-08-14
© Allison J. Gong

But the best part of these experiments was the reflections on the surface of the water. Check it out.

Olive-green towers rising from a carpet of pink algae.
Halosaccion glandiforme in a tidepool
2022-08-14
© Allison J. Gong

And this is the money shot! I just love how this turned out.

Olive-green towers rising from a carpet of pink algae in the bottom half of the image. The same tower are reflected in the top half of the image.
Halosaccion glandiforme in a tidepool
2022-08-14
© Allison J. Gong

This was a super fun morning. I'm looking forward to visiting this site again, when the light is better. When the daylight low tides return in a few months they will be in the afternoon. I anticipate some fantastic light shows in these pools and channels. I'll be teaching most afternoons by then, but will get out as often as I can.

1

Some organisms, like some people, have a charisma that just can't be explained. For me, the sea palm (Postelsia palmiformis) has always been one such organism. Maybe part of its charm is the fact that it's not very common; it lives on rocky outcrops on exposed outer coasts, which aren't the easiest places to get to.

See? That's a clump of Postelsia way out there in the center of the photo.

Rocks covered with olive-green seaweeds in the foreground and ocean in the midground, under a cloudy sky
Algae-covered rocks in the intertidal at Pigeon Point
2022-08-13
© Allison J. Gong

The tide was pretty good (-0.9 feet) so I figured it was worth working my way out there. I had a wishlist of critters to collect, but they would be pretty easy to find, and I had time to spend in the low intertidal. The algae are still going strong, although I did see some signs of senescence in some of the reds. The Postelsia, on the other hand, were in great shape.

Group of palm tree-shaped olive-green seaweeds attached to a rock in the intertidal.
Small stand of sea palms (Postelsia palmiformis) at Pigeon Point
2022-08-13
© Allison J. Gong

Despite its beautiful olive-green colors, Postelsia is a brown alga in the phylum Ochrophyta. It is in the same order (Laminariales) as the large canopy-forming kelps Macrocystis pyrifera and Nereocystis luetkeana. However, Postelsia gets to be only about a half-meter tall. It has a thick, flexible stipe and a cluster of thin blades at the top of the stop, which give it the palm tree appearance. Postelsia's hapterous holdfast does what it says on the label—it hangs on tightly to the rock. In fact, the rock often fails before the holdfast does, and when Postelsia washes up onto the beach it often has bits of rock (or mussel or whatever) still in the grip of the holdfast.

And it turns out that Postelsia is one of the many photogenic seaweeds. This morning it was doing the '80s hair band thing. Especially when photographed from the vantage of a front-row groupie.

Postelsia palmiformis rocking the joint at Pigeon Point
2022-08-13
© Allison J. Gong

So that's the organism that captured and held my attention this morning. The algae don't get nearly the appreciation they deserve, even among fans of the rocky intertidal. Maybe shining a light on them once in a while is something I can do to fix that.

One of the reasons I selected this particular Earthwatch expedition was that it involved studies of both forest and ocean, which are my two favorite ecosystems here at home. I wanted to compare what I'm familiar with to similar habitats on the opposite coast. Regarding the rocky intertidal, I had been warned not to expect the spectacular biodiversity I'm used to on the Pacific coast, and that warning turned out to be quite a propos.

Along the California coast the rocky intertidal is an explosion of colors and textures, especially during the growing season. See this at Pigeon Point:

Ocean and seaweed-covered rocks
Rocky intertidal at Pigeon Point, San Mateo County, California
2022-06-01
© Allison J. Gong

and this at Asilomar:

Ocean and seaweed-covered rocks
Rocky intertidal at Asilomar, Monterey County, California
2022-06-03
© Allison J. Gong

And this is what you see when you walk—or in the case at Pigeon Point, climb down—to the site. It just is this varied, with several algae that are easily recognizable as being different even if you don't know what their scientific names are.

Contrast that with the rocky intertidal at Frazer Point on the Schoodic Peninsula:

Coastline with small rocks covered with golden-brown seaweed
Mounds of Ascophyllum nodosum at Frazer Point on the Schoodic Peninsula
2022-06-17
© Allison J. Gong

All of the algae covering these rocks are rockweeds, and most of it is Ascophyllum nodosum. One of the projects we worked on was a study measuring the biomass of Ascophyllum on the coast of the Schoodic Peninsula. To do so we sampled along 30-meter transects in the intertidal, counting the number of Ascophyllum thalli in half-meter quadrats, looking for other algae and some key invertebrates, and weighing the Ascophyllum. This last part was new to me, and a lot of fun. It involved dividing the masses of Ascophyllum into as many as three bundles, wrapping it all up in a net like a burrito, and weighing the burrito using a hand-held metric scale.

Three people wearing yellow high-visibility vests kneeling among algae in the intertidal
Left to right: Sally, Alex, and Valerie weighing Ascophyllum at Frazer Point in Acadia National Park
2022-06-17
© Allison J. Gong

Clearly, Ascophyllum nodosum makes up the vast majority of biomass along this coastline. There are some other rockweeds in the genus Fucus, a bit of sea lettuce (Ulva sp.), and that's about it. But the lack of diversity doesn't mean the intertidal doesn't have its own sort of spartan beauty. The lead for this project, Maya, described Ascophyllum as having a Van Gogh effect in the landscape. It didn't take long to see what she meant. Check it out:

Ascophyllum nodosum at Frazer Point in Acadia National Park
2022-06-17
© Allison J. Gong

and

Ascophyllum nodosum at Frazer Point in Acadia National Park
2022-06-17
© Allison J. Gong

There are, of course, many types of beauty in the natural world. What I saw in the intertidal at Acadia wasn't at all like what I'm used to seeing on the Pacific coast, but I wouldn't say it is any less beautiful. The variation in color between new growth and the older parts of the Ascophyllum thalli makes for gorgeous patterns as the thalli drape over cobbles.

Besides, any morning in the intertidal is a good morning! I certainly wasn't going to complain.

1

Last week we had some of the best low tides of the season, and I was grateful to spend three consecutive mornings in the intertidal. The picture-taking conditions were fantastic when I went to Natural Bridges, and I snapped away like a madwoman. Unfortunately, last week was also finals week, and it wasn't until I got all of the grading done and actual grades submitted that I let myself look at the photos. And there were a lot of good ones!

There are many wonderful things about the early morning low tides. One of the best is that most people prefer to remain in bed rather than get up before the sun and splash around in cold water. The past several weeks had been very busy, with little time for solitude, and I badly needed some time by myself in nature.

Usually when I post an entry here I have a story to tell. This time I don't, unless the photos themselves tell the story. Let me know what you think.

Rocks covered in green surfgrass and brown seaweed, surrounded by water. Wave breaking in the background. Clouds in the sky.
Low intertidal at Natural Bridges
2022-05-17
© Allison J. Gong

Act I

At this time of year the algae are the stars of the show. They are at their most lush and glorious for the next several weeks.

Brown and dark iridescent seaweeds on rocks
Assemblage of mid-intertidal organisms
2022-05-17
© Allison J. Gong

Even in the sand, the algae were abundant and conspicuous. In the low intertidal the most prominent algae are the kelps. Here the feather boa kelp (Egregia menziesii) and the various Laminaria species are doing really well. Egregia also occurs higher in the intertidal, but Laminaria and Macrocystis (just visible along the right edge) are low intertidal and subtidal species.

Kelps (Egregia menziesii, Laminaria setchellii, and Macrocystis pyrifera) in the low intertidal
2022-05-17
© Allison J. Gong

My absolute favorite sighting of the morning was this group of algae on top of the sand. I love the way that the algae are splayed out. They are just so pretty!

Assemblage of algae in the sand
2022-05-17
© Allison J. Gong

Macrocystis pyrifera is justifiably well known as the major canopy-forming kelp along our coast. But it does occur in the low intertidal, as mentioned above.

Long strands of golden-brown seaweed
Giant kelp (Macrocystis pyrifera)
2022-05-17
© Allison J. Gong

Intermission

Act II

And now to focus on some individual organisms. Starting with my favorites, the anemones. This time it was the giant green anemone, Anthopleura xanthogrammica, that was the star of the show.

Large bright green sea anemone
Green anemone (Anthopleura xanthogrammica)
2022-05-17
© Allison J. Gong

I experimented with close-up shots, too!

There was a clingfish (Gobiesox meandricus), in its usual under-rock habitat. Don't worry, I made sure to carefully replace the rock as I found it. This fish was about 10cm long. It may be the first clingfish I've ever seen at Natural Bridges. Clearly, I need to do more rock flipping.

Mottled brown fish with large head, on a rock
Northern clingfish (Gobiesox meandricus)
2022-05-17
© Allison J. Gong

A clingfish's pelvic fins are fused together and modified to form a suction cup on the ventral surface. Clingfish can hop around a bit and are super cute when they eat. They sort of dart forward and land on the food, then shuffle around as they ingest it.

The coralline algae were both abundant and flourishing. They are looking fantastic this season. Someday I'll study up on the coralline algae and write about them. For now, here are some happy snaps of Bossiella.

Pink, stiff, seaweed. Body of repeated sections.
Bossiella sp., one of the erect coralline algae
2022-05-17
© Allison J. Gong

Such a beautiful organism!

Sticking with the pink theme, another oft-overlooked organism is the barnacle Tetraclita rubescens. It has a few common names, including pink volcano barnacle and thatched barnacle. It is the largest of the intertidal barnacles along the California coast, and can be fairly abundant in some places. It is never as abundant as the smaller white (Balanus glandula) and gray/brown (Chthamalus dalli/fissus) barnacles, though.

Large pink barnacles on a rock
Tetraclita rubescens, the large pink barnacle
2022-05-17
© Allison J. Gong

Which brings us to my favorite color, purple. The tentacles of the sandcastle worm, Phragmatopoma californica, are a beautiful shade of purple. You don't get to see the tentacles unless the worm is under water, and with the tide as low as it was when I was there this past week, it wasn't easy finding any Phragmatopoma that were submerged. I've written about Phragmatopoma before, so won't go into details here. But look at all those fecal pellets!

Tentacles of the sandcastle worm, Phragmatopoma californica
2022-05-17
© Allison J. Gong

And last but not least, here are a couple of the many purple urchins (Strongylocentrotus purpuratus) out there. At Natural Bridges there's a large pool fairly high in the mid-intertidal that is called the Urchin Pool because it contains dozens (hundreds?) of urchins. Most of them are burrowed into the soft rock. Those are sort of easy pickings. I like finding urchins in less-obvious places, like these.

Purple urchins (Strongylocentrotus purpuratus) tucked into burrows
2022-05-17
© Allison J. Gong

Urchins in the intertidal often cover themselves with bits of shell, small pebbles, and algae. This helps them retain water as the tide recedes. At a location where the rock is soft, such as Natural Bridges, many of the urchins have grown larger than the opening to their burrow and cannot leave to forage; these imprisoned urchins have to wait for pieces of algae to drift nearby, which they can grab with their tube feet and then transport to the mouth on the underside. So long as they don't get pried out by otters, the urchins seem to do just fine.

I think that's enough for now. I hope these photos give you some idea of what it was like out there a week and a half ago. The next excellent low tide series is in mid-June. Snapshot Cal Coast will be in full swing then, so get out there if you can!

2

Sometimes things just work out, through no fault of my own. In terms of good minus tides occurring in daylight hours, this weekend's tides are the best we will have all season. Today (Saturday 29 May) is the third of five intertidal excursions I have planned. This morning I went up to Pistachio Beach to collect some things for the Seymour Center. I always feel a teensy bit apprehensive agreeing to collect for anybody but myself, because it is quite likely that I will get skunked and not be able to bring back what is needed. So usually I just agree to keep my eyes open for things that are on the wish list and make no promises.

The current wish list for the Seymour Center includes fishes. I've already brought them some sculpins and a clingfish, but small pricklebacks are also welcome. Pistachio is a popular place for people who fish for large pricklebacks. Apparently they (the pricklebacks) put up a good fight and make tasty eating. The usual way of fishing for them is poke-poling. I am not entirely sure how that works, but it involves a long pole and baited hooks. I think the idea is to lure a prickleback out from its hiding place at low tide, when it is sort of stranded away from open water. Adults get up to 70-80 cm long, and are as big around as my forearm.

Unlike the fishermen, I was fishing for young pricklebacks, hoping to find some that were about the length of my hand. Possessing the ideal set of characteristics for avoiding capture—a long eel-like body, small head, slimy coating, and the ability to augur really quickly into even the tiniest crack amongst the cobbles—these small fish led me on a merry chase for quite a while. However, the advantages that I have over even a wily prickleback are an enlarged cerebral cortex, opposable thumbs, and the dexterity to use both a dip net and a zip-loc baggie. When all was said and done I had two appropriately sized pricklebacks in my baggie, and two others had gotten away from me. Oh, and I did also bag another clingfish!

Having had that bit of success and not wanting to press my luck, I started poking around just for the hell of it, without any clear objective in mind. As I've said before, what we gain from a super low tide like this (-1.6 ft) is not only access to more real estate in the low intertidal, but more time to spend there before the tide returns. I took lots of photos, which I will present in chronological order. These will give you an idea of what it was like out there this morning.

Even the hike across the beach yielded something nice—this small stand of Postelsia palmaeformis, the sea palm. These poor junior kelps will be taking a beating with these spring tides rushing up and down. That's the price they pay for living out there on those exposed rocky points.

Group of 6 sea palms on the beach
06:53 Postelsia palmaeformis
2021-05-29
© Allison J. Gong

The leather star Dermasterias imbricata isn't one of the most common stars in the intertidal around here. It was one of the species that was hit pretty hard by the most recent outbreak of Sea Star Wasting Syndrome. We see one every so often, but they are nowhere as abundant as the ochre stars or bat stars.

07:10 Dermasterias imbricata
2021-05-29
© Allison J. Gong

Pistachio Beach isn't the best place for large anemones, but of course there are some. This is one of the few big Anthopleura anemones that I saw today. There are many of the small cloning anemones, A. elegantissima, in the high intertidal, as well as the moonglow anemones, A. artemisia, in the mid and low sandy areas.

07:12 Anthopleura xanthogrammica
2021-05-29
© Allison J. Gong

I was so pleased to see my favorite red alga doing really well in the low zone! It is so pretty.

Red seaweed
07:29 Erythrophyllum delesserioides
2021-05-29
© Allison J. Gong

And at the same time I accidentally discovered a pretty big rock crab, which was tucked under a rock. For its species, this one was pretty calm and didn't come at me with big claws up. It could be that this crab is a male, and is clasping a female beneath him. I didn't check.

Dorsal view of a rock crab
07:29 Romaleon antennarium
2021-05-29
© Allison J. Gong

One of the things I found while turning over rocks to look for fish is this purple urchin:

Sea urchin with purple and green coloration
08:02 Strongylocentrotus purpuratus
2021-05-29
© Allison J. Gong

And a bit later, a nice healthy group of Dictyoneurum californicum. As these thalli age, they will develop longitudinal splits at the base of the blades. Right now they are young and crispy.

Blades of a brown seaweed with a waffle-like texture
08:15 Dictyoneurum californicum
2021-05-29
© Allison J. Gong

And who can resist such an exuberantly decorated limpet? Certainly not I! Reminds me of the fancy hats that ladies used to wear for Easter. Or Beach Blanket Babylon.

Limpet heavily fouled with encrusting and upright coralline algae
08:28 Limpet, probably Lottia sp.
2021-05-29
© Allison J. Gong

Chitons, the overlooked molluscs that reach peak abundance and diversity in the intertidal, can be very common along the coast. Species composition varies from site to site, though. Here at Pistachio Beach, the two species of Tonicella are very common. I found several of them on the undersides of rocks. This one is T. lokii.

Chiton with dark wavy lines on the shell plates and alternating pink and beige patches on the girdle
08:52 Tonicella lokii
2021-05-29
© Allison J. Gong

After two hours of catching fish and looking around, I was getting cold. Time to head back up and out. That took an additional half-hour or so, because I kept getting distracted by the algae. For example, look at how beautiful this Fucus is. And note the swollen tips, which mean this thallus is getting sexy. 'Tis the season, after all.

Olive-green seaweed with wide dichotomous branches and swollen branch tips
09:15 Fucus distichus
2021-05-29
© Allison J. Gong

One of the other rockweeds, Pelvetiopsis limitata, was also very thick and abundant.

Olive-green seaweed with narrow dichotomous branches
09:19 Pelvetiopsis limitata
2021-05-29
© Allison J. Gong

The rockweeds share the high intertidal with a few species of red algae. The most common reds in this zone are the two (or however many there are) species of Mastocarpus, and Endocladia muricata.

Reddish-brown seaweed with wavy blades, covered with tiny bumps
09:21 Mastocarpus papillatus
2021-05-29
© Allison J. Gong

I always want to stop and look around in the high zone on my way down. Because when I walk past sights like this, it's hard not to stay and study more closely. Then I remember that I can take as much time as I want in the high zone on the way out. This morning I took lots of photos of these reds and rockweeds.

How many different types of seaweed can you see?

09:24 High intertidal algal assemblage
2021-05-29
© Allison J. Gong

So there you have it, my morning summarized in about a dozen photos. I hope your Saturday was as enjoyable as mine was!

1

The rocky intertidal is coming into its full summer glory right now. The early morning low tides have been spectacular in May, and they'll get better for the remaining few days of the month. This morning I went out to Franklin Point to poke around. Low tide was -1.8 feet (yippee!) at 06:13. And for once the swell was also down, so the ocean seemed very far away from the mid-tidal zone. See?

Intertidal rocks covered with algae and surfgrass
Rocky intertidal at Franklin Point
2021-05-27
© Allison J. Gong

One thing that's nice about Franklin Point is that despite its exposure, especially on the north side of the point, all those boulders provide a lot of protection from the incoming waves. It's amazing how they serve to dissipate the water's energy. Of course, that doesn't prevent the inevitable rise of water in the pools, but at least when it arrives it just floods boots instead of knocking down a distracted marine biologist.

Here's a 20-second video I shot from the same spot.

Just as in any terrestrial habitat, summer is when the photosynthetic organisms come to dominate the rocky intertidal. Even a cursory glance shows that every surface is covered with algae and/or surfgrass. So why not showcase some of these organisms when they look their best?

Fronds of feather boa kelp
Feather boa kelp (Egregia menziesii)
2021-05-27
© Allison J. Gong

In terms of biomass, Egregia is by far the most abundant alga along our intertidal coast. Individual fronds can be 5+ meters long, and several fronds arise from each holdfast. Higher up in the mid tidal zone the Egregia was forming curtains hanging down along vertical faces.

Large stand of feather boa kelp hanging down from rocks in the mid-tidal zone
Feather boa kelp (Egregia menziesii) and other intertidal algae
2021-05-27
© Allison J. Gong

But Egregia does know how to share the spotlight. Here it is posing with a couple of other low tidal denizens:

Egregia menziesii, Laminaria setchellii, and Phyllospadix torreyi
2021-05-27
© Allison J. Gong

That's Egregia on the left, of course. One of the laminarian kelps, Laminaria setchellii, is taking center stage in this shot. When it lives in the subtidal Laminaria setchellii is an understory kelp; it gets to about 1.5 meters tall and can form dense stands. In this species each holdfast gives rise to a single stipe that in turn opens into a wide blade that is deeply divided, as you can see. The surfgrass Phyllospadix torreyi is on the right. There is a lot of surfgrass in the rocky intertidal these days. It's pretty treacherous stuff, too. It's very slippery and likes to cover pools that are deeper than you'd expect. I've learned the hard way that it cannot be trusted at all.

My favorite seaweeds are always the reds. And my favorite of the reds is Erythrophyllum delesserioides, looking so lush and pretty this time of year. It is a low intertidal species, and can be locally abundant. Some years it seems to get beat up and look ratty, but this year it looks great. Here it is, surrounding a couple of Laminaria setchellii.

Leafy red seaweed and a brown kelp
Erythrophyllum delesserioides and Laminaria setchellii
2021-05-27
© Allison J. Gong

Here's a grouping of Erythrophyllum and some other reds. I can see two species of Mazzaella, and of course there are Egregia and Phyllospadix mingled together on the right. So pretty!

 in the rocky intertidal
Mixed assemblage of red algae (Mazzaella flaccida, Mazzaella splendens, and Erythrophyllum delesserioides)
2021-05-27
© Allison J. Gong

When the tide is as low as it was this morning, a marine biologist has a lot of time to explore. I had just about exhausted the batteries in both my camera and my phone and was getting uncomfortably cold when I decided to head in. On the way back I stopped to take a look at the rockweeds, which live in the high intertidal. Franklin Point isn't a hotspot for rockweed abundance or diversity, but I did see this nice thallus of Fucus.

Rockweed (Fucus distichus)
2021-05-27
© Allison J. Gong

Fucus is the seaweed with the bifurcated branch tips. The tips are starting to swell up, which means this thallus is getting ready to spawn. Of all the algae, rockweeds are unusual in that they have what phycologists call an "animal-like" life cycle. They don't have sporophytes or gametophytes. They just have bodies, or thalli. Some thalli are female and some are male. Instead of releasing multiple kinds of spores and whatnot, they release eggs and sperm. The resulting zygote develops as you would expect, only instead of forming a young animal it grows into a baby seaweed.

I do love that olive green color of the rockweeds, which belong to the phylum of brown algae (Ochrophyta). Notice that there's a bit of similarly colored sheetlike seaweed right below the Fucus. That seaweed has the same color, but is in the red algae (Phylum Rhodophyta). Once again, we are reminded that the algae cannot be reliably sorted into phyla based solely on color. Mother Nature can be very tricksy!

So there you have it, my trip report for this morning's excursion to Franklin Point. The tides are excellent for the next several days, and I will be out there for most of them. This is my favorite time of the year.

A few weeks ago I went out to Franklin Point and saw that the sea lettuces (Ulva sp.) were spawning in the high pools. I revisited the site today, with a lower tide to work with, and spent a considerable amount of time looking for and photographing the staurozoans. I did find some, too! But they are not the focus of this post.

As the tide came back in, I spent more time working my way through the higher pools. At Franklin Point there are very few places where the water is still. Even in the high regions the intertidal terrain is more surge channels than pools. But if you go high enough up the beach there are some quiet areas where the water, if it moves, does so very slowly. It is in these areas where the algal spawn forms those beautiful patterns that I photographed at the beginning of the month. Today there was much less algal spawn accumulating in the calm areas. It was also windy (and cold) this morning, so the patterns were not as crisp as they had been in early April. Still pretty, though!

Algal spawn on surface of a tidepool
Ulva spawn on surface of tidepool at Franklin Point
2021-04-29
© Allison J. Gong

On my way back up the beach I saw something that looked like an iceberg viewed from the air.

Foam on surface of water
2021-04-29
© Allison J. Gong

This is an accumulation of foam being pushed ashore. I didn't have any way to collect a sample to bring back to the lab for closer observation, but foams like this are usually due to algal particulates. Surface agitation whips up the organic matter, which act as surfactants and produce tiny bubbles. I'd be willing to bet that the Ulva spawn is at least partly responsible for this foam.

I watched the foam for several minutes, and was rewarded for my vigilance. I found an area where the highest reach of the incoming tide was gently washing back and forth.

I found the slow swirling to be rather mesmerizing. Maybe that was due to the early morning, the brisk sea air, or hunger pangs. But when I saw this I thought to myself, "I've seen that somewhere before." You might be able to guess where.

Swirling foam on the surface of the water at Franklin Point
2021-04-29
© Allison J. Gong

To validate my intuition, when I got home I looked up some images and found that I was sort of right after all.

The Starry Night by Vincent van Gogh, 1889
Public domain - Google Art Project

Okay, so maybe the resemblance isn't as strong as all that. But I can still imagine the streams in van Gogh's painting swirling and flowing the way the algal foam does. What do you think?

3

Way back in 2015 I wrote about some Ulva that spawned in a bowl at the lab, and delved into the mysteries of reproduction in the green algae. This morning I was out at Franklin Point and saw this:

Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong

I had seen the sea lettuces (Ulva spp.) spawning in these high pools at Franklin Point before, and usually cursed the murkiness of the water. But today the water was dead calm, with the tide low enough that there were no waves to slosh into the pools. The result was a gorgeous marbled swirl in the water. The patterns were stunning.

Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong
Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong
Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong

What these photos show is the Ulva releasing either spores or gametes. Without microscopic examination it's impossible for me to know whether these tiny cells are spores or gametes. What I can say is that the spawn is released from the distal ends of the thallus, making the body of the alga look ragged.

Sea lettuce in a tidepool. Some blades are clear.
Sea lettuce (Ulva sp.) at the edge of a tidepool at Franklin Point
2021-04-01
© Allison J. Gong

The parts of the thallus that have already spawned are now clear. The tissue itself will soon disintegrate, leaving behind only the healthy green parts, which should be able to regrow.

All of these photos were taken in pools where the spawning itself had either completely or mostly stopped. Obviously when the tide comes back all of this yellow spooge will get mixed up. It's only when the water is perfectly still that these streams would form. It was hard stepping around the pools to take the photos, as the last thing I wanted to do was stomp my big booted foot into a pool and disrupt the beautiful patterns. Fortunately the sun angle was a little cooperative this morning, and I was able to find a pool where active spawning was happening.

What appears to be an act of destruction—the alga's brilliant green thallus being reduced to yellow streaks that drift away with the tide—is really an act of procreation. This is terminal reproduction, literally the last thing an organism does before it dies. Salmon do this, as do annual plants. The sheer amount of algal spawn in these tidepools is astounding. Imagine the number of 2-micron cells needed to color the water to this degree. But if reproducing is the last thing you're going to do in your life, you might as well go all in on your way out, right?

I've written before about the rocky intertidal as a habitat where livable space is in short supply. Even areas of apparently bare rock prove to be, upon closer inspection, "owned" by some inhabitant or inhabitants. That cleared area in the mussel bed? Look closely, and you'll likely find an owl limpet lurking on the edge of her farm.

See?

Owl limpet at edge of her territory, a clear area surrounded by mussels.
Owl limpet (Lottia gigantea) on her farm at Natural Bridges
2017-04-01
© Allison J. Gong

And of course algae are often the dominant inhabitants in the intertidal.

Assemblage of algae in the intertidal
Assemblage of algae north of Waddell Creek
2020-06-09
© Allison J. Gong

When bare rock isn't available, intertidal creatures need other surfaces to live on. To many small organisms, another living thing may be the ideal surface on which to make a home. For example, the beautiful red alga Microcladia coulteri is an epiphyte that grows only on other algae. Smithora naiadum is another epiphytic red alga that grows on surfgrass leaves.

We describe algae that grow on other algae (or plants) as being epiphytic (Gk: epi "on" + phyte "plant"). Using the same logic, epizooic algae are those that live on animals. In the intertidal we see both epiphytic and epizooic algae. For many of them, the epizooic lifestyle is one of opportunism--the algae may not care which animal they live on, or even whether they live on an animal or a rock. Some of the epiphytes, such as Microcladia coulteri, grow on several species of algae; I've seen it on a variety of other reds as well as on a brown or two (feather boa kelp, Egregia menziesii, immediately comes to mind). Smithora naiadum, on the other hand, seems to live almost exclusively on the surfgrass Phyllospadix torreyi.

Animals can also live as epiphytes. The bryozoan that I mentioned last time is an epiphyte on giant kelp. Bryozoans, of course, cannot move once established. Other animals, such as snails, can be quite mobile. But even so, some of them are restricted to certain host organisms.

The aptly called kelp limpet (Discurria insessa), lives only on the stipe of E. menziesii, the feather boa kelp. Its shell is the exact same color as the kelp where it spends its entire post-larval life. Larvae looking for a place to take up a benthic lifestyle settle preferentially on Egregia where adult limpets already live. It's a classic case of "If my parents grew up there it's probably a good place for me."

Limpet on stipe of feather boa kelp
Discurria insessa on stipe of Egregia menziesii
2020-06-07
© Allison J. Gong

The limpets cruise up and down the stipe, grazing on both the epiphytic diatoms and the kelp itself. They can make deep scars in the stipe and even cause breakage. Which makes me wonder: What happens to the limpet if it ends up on the wrong end of the break? Does it die as the broken piece of kelp gets washed away? Can it release its hold and find another bit of Egregia to live on? Somehow I doubt it.

Discurria insessa on stipe of Egregia menziesii
2018-05-16
© Allison J. Gong

The last time I was in the intertidal I encountered another epiphytic limpet. Like the red alga Smithora naiadum, this snail one lives on the narrow leaves of surfgrass. It's a tiny thing, about 6 mm long, and totally easy to overlook, given all the other stuff going on in the tidepools. But here it is, Tectura paleacea. Its common name is the surfgrass limpet, which actually makes sense.

Top view of surfgrass limpet on leaf of surfgrass
Surfgrass limpet (Tectura paleacea) on surfgrass (Phyllospadix torreyi) at Davenport Landing
2020-07-07
© Allison J. Gong

Tectura palacea feeds on the microalgae that grow on the leaves of the surfgrass, and on the outer tissue layer of the plant. They can obviously grow no larger than their home, so they are narrow, about 3 mm wide. But they are kind of tall, although not as tall as D. insessa.

Lateral view of surfgrass limpet on leaf of surfgrass
Surfgrass limpet (Tectura paleacea) on surfgrass (Phyllospadix torreyi) at Davenport Landing
2020-07-07
© Allison J. Gong

Cute little thing, isn't it? Tectura palacea seems to have avoided being the focus of study, as there isn't much known about it. Ricketts, Calvin, and Hedgpeth write in Between Pacific Tides:

A variety of surfgrass (Phyllospadix) grows in this habitat on the protected outer coast; on its delicate stalks occurs a limpet, ill adapted as limpets would seem to be to such an attachment site. Even in the face of considerable surf, [Tectura] palacea, . . . , clings to its blade of surfgrass. Perhaps the feat is not as difficult as might be supposed, since the flexible grass streams out in the water, offering a minimum of resistance. . . The surfgrass provides not only a home but also food for this limpet, which feeds on the microalgae coating the blades and on the epithelial layers of the host plant. Indeed, some of the plant's unique chemicals find their way into the limpet's shell, where they may possibly serve to camouflage the limpet against predators such as the seastar Leptasterias hexactis, which frequents surfgrass beds and hunts by means of chemical senses.

And that seems to sum up what is known about Tectura palacea. There has been some work on its genetic population structure, but very little about the limpet's natural history. The intertidal is full of organisms like this, which are noticed and generally known about, but not well studied. Perhaps this is where naturalists can contribute valuable information. I would be interested in knowing how closely the populations of T. palacea and Phyllospadix are linked. Does the limpet occur throughout the surfgrass's range? Does the limpet live on both species of surfgrass on our coast? In the meantime, I've now got something else to keep my eye on when I get stranded on a surfgrass bed.

1

A few weeks ago I was contacted by a woman named Kathleen, who reads this blog and is herself a student of the seaweeds. She said that she studies a site up at Pescadero, about an hour up the coast from me. We decided to meet up during the series of low tides around the Fourth of July so we could explore the area together, and she could help me with my algal IDs. My friend and former student, Lisa, joined us for the fun.

Map of the Pescadero Point region
05 July 2019
© Google

The most prominent landmark along the coastline in this region is Bird Island, which is accessible only at minus tides, when it is revealed to be a peninsula. It smells pretty much as you probably imagine, especially if you happen to be downwind. Given the prevailing wind direction, that means that the closer you get to Bird Island from the south, the stronger the smell. Kathleen's site is the south side of Pescadero Point, fortunately far enough south of Bird Island that the smell isn't noticeable from that distance. She has a permanent transect that she surveys regularly, taking note of algal abundances and distributions.

South side of Pescadero Point
05 July 2019
© Allison J. Gong

One of the notable things we all noticed was the conspicuous presence of big, healthy ochre stars (Pisaster ochraceus)--many hand-sized or larger. I also saw many smaller stars, in the 2 cm size range, but these were hidden in crevices or under algae. The big guys and gals, were out there in plain sight.

Constellation of ochre stars (Pisaster ochraceus) at Pescadero Point
05 July 2019
© Allison J. Gong

However, not all was perfect for the sea stars at Pescadero Point. One of the ochre stars showed symptoms of sea star wasting syndrome (SSWS). It had autotomized two of its arms and had a sloppy, goopy open wound that extended into the oral disc. It was also mushy when I touched it and didn't firm up the way healthy stars do. This star is a goner, even though it doesn't know it yet. That's the beauty (and in this case, tragedy) of an entirely decentralized nervous system.

Sick ochre star (Pisaster ochraceus) at Pescadero Point
05 July 2019
© Allison J. Gong

After I mentioned having seen a sick sea star we compared notes on the current status of SSWS. What more do we know about the syndrome, and any recovery of stars? We came to the consensus that the oubreak was probably caused by a perfect storm of ecological conditions--an opportunistically pathogenic virus that is ubiquitous in the environment, environmental stresses, and high population densities both intertidally and subtidally. Kathleen asked me what I had been seeing recently. I told her that Pisaster ochraceus, one of the species that melted away in spectacular fashion, seems to be making a strong comeback in the places where I used to see it in large numbers. Even though every once in a while i see a sick star, places like Natural Bridges and Davenport Landing are again populated by lots of hand-sized-or-bigger ochre stars. Which of course brings up the question of where these large stars suddenly came from. I think they were tiny stars when the outbreak occurred, hiding in the mussel beds. Many of them died, but as with any plague there are always some survivors. Those lucky few managed to hang on and creep into the niches that opened up when so many adults died. But would little juveniles only a few millimeters in diameter be able to grow to the sizes that we're seeing now, in ~5 years? I suppose that's not out of the question, and we know that when fed well in the lab they grow very quickly, but individual growth rates in the field are difficult to measure.

Another animal goody that we saw were clusters of the bryozoan, Flustrellidra corniculata. Unlike most bryozoans, which are calcified and crunchy, Flustrellidra colonies are soft and flexible. They look more like strange, thick pieces of brown algae than anything recognizable as a bryozoan.

Flustrellidra corniculata at Pescadero Point
05 July 2019
© Allison J. Gong

We were there to do some basic marine botany, and although I kept getting distracted by the invertebrates I did also pay attention to the floral aspect of Kathleen's site. She pointed out that Laminaria sinclairii, one of the small low-intertidal kelps, was always abundant. It's true, there were rocks that were entirely covered with L. sinclairii, like this one:

Laminaria sinclairii at Pescadero Point
05 July 2019
© Allison J. Gong

Laminaria sinclairii and L. setchellii are the most common intertidal species of the genus on our coast. They are easily distinguishable because L. sinclairii has a single undivided blade arising from the stipe, and L. setchellii has a blade that is subdivided into fingerlike sections; in fact, the former species epithet for L. setchellii was dentigera, referring to 'finger'.

Laminaria setchellii at Franklin Point
15 June 2018
© Allison J. Gong

See the difference?

There is a third species of Laminaria on our coast, that I knew only by reputation. What I'd heard is that Laminaria ephemera resembles L. sinclairii except for the morphology of the holdfast: L. ephemera has a discoid, suction-cup holdfast while L. sinclairii has the more typical hapterous holdfast (made of intertwined cylindrical projections). I think I might have seen a few L. ephemera at Pescadero. These thalli appear to have suction-cup holdfasts, don't they?

Laminaria ephemera(?) at Pescadero Point
05 July 2019
© Allison J. Gong
North side of Pescadero Point
05 July 2019
© Allison J. Gong

We didn't spend much time on the south side of the point, but scrambled over the rocks to the north side, where there are stretches of sandy beach between rocky outcrops. Bird Island is that peninsula in the top of the picture. As I mentioned above, it is connected to the beach only at low tide, so while I think of it as a peninsula, it really is an island most of the time.

Once on the north side of the point we slowed down and made some more attentive observations of the flora. It turns out that this portion of our intertidal visit was sponsored by the letter 'P'. One of the things we all noticed was the prevalence of Pyropia, the filmy red alga that is common in the high-mid intertidal. The thallus of Pyropia consists of a single layer of cells connected to form a very thin elastic tissue. It dries to a crisp in the sun, but rehydrates when the tide returns. You've probably encountered Pyropia before without realizing it: nori is made of Pyropia that has been shredded and processed into paper-like sheets, used for things like sushi rolls.

Although it looks uniformly blackish-green when packaged for human consumption, Pyropia's color in life is a glorious iridescent mixture of greens, olives, and purples. It is another of those easily overlooked denizens of the intertidal that deserves a much closer look than it usually gets.

Pyropia sp. at Pescadero Point
05 July 2019
© Allison J. Gong
Plocamium cartilagineum at Pescadero Point
05 July 2019
© Allison J. Gong

Another common red alga at Pescadero Point is the delicate and lacy Plocamium cartilagineum. This is one of the hobbyist phycologist's favorite species because it presses like a dream and makes great gifts or wall decorations. As I wrote about here, Plocamium has a doppelganger: Microcladia coulteri. These algae share a similar morphology, but as I mentioned in the previous post, natural history makes it easy to distinguish between the two in the field. Microcladia is epiphytic, growing on other algae, and Plocamium is not.

Plocamium grows on rock surfaces in the mid-to-low tide regions. It sometimes gets surrounded or even buried in sand, but if you dig down far enough you'll always find the holdfast attached to a rock (or shell or other hard object).

Last month I wrote about Postelsia palmaeformis, the sea palm. We found a most handsome specimen washed up on the beach. Note that, as per usual, it wasn't the holdfast of the kelp that failed. The holdfast did its job perfectly well, and it was the mussel it was attached to that broke free of the rock.

Postelsia palmaeformis at Pescadero Point
05 July 2019
© Allison J. Gong

The sad thing about finding great specimens like this on the beach is the realization that it will soon be dead. In fact, so will the mussel. Such is the price organisms pay for failing to hang onto their substrate (or for their substrate's failure to hang on). The rocky intertidal is a harsh place to live, and can be unforgiving of mistakes and bad decisions.

That's part of the reason I find it so fascinating. Most wild organisms live on the knife-edge of survival, with only the thinnest margin between life and death. Every organism has its predators, pathogens, and parasites to deal with on a daily basis, in addition to the physical stresses of its habitat. All of the organisms that I study in the intertidal are marine--not freshwater or even brackish, although some can tolerate reduced salinity (and on the other extreme, some tolerate very high salinity). They evolved to live in the ocean, in a habitat where the ocean abandons them for a few hours twice a day. Yet as improbable as that sounds, the diversity in the intertidal is astonishingly high. Obviously, for those that can live there, the trade-off between stability and safety is worthwhile. Nature will always find a way.

%d bloggers like this: