Skip to content

Emergence

Every summer, like clockwork, my big female whelk lays eggs. She is one of a pair of Kellett's whelks (Kellettia kellettii) that I inherited from a labmate many years ago now. True whelks of the family Buccinidae are predatory or scavenging snails, and can get pretty big. The female, the larger of the two I have, is almost the length of my hand; her mate is a little bit smaller.

Many marine snails (e.g., abalones, limpets, and turban snails) are broadcast spawners, spewing large numbers of gametes into the ocean and hoping for the best. These spawners have high fecundity, but very few, if any, of the thousands of eggs shed will survive to adulthood. We say that in these species, parental investment in offspring extends only as far as gamete production. Fertilization and larval development occur in the water column, and embryos and larvae are left to fend for themselves.

The whelks, on the other hand, are more involved parents. They maximize the probability of fertilization by copulating, and the female produces yolky eggs that provide energy for the developing embryos and larvae. Rather than throw her eggs to the outside world and hoping for the best, the female whelk deposits dozens of egg capsules, each of which contains a few hundred fertilized eggs.

Over a period of about three weeks I shot several time-lapse video clips of the mama whelk laying eggs. Due to the pandemic we need to work in shifts at the lab. Fortunately I have the morning shift, which means I can start as early as I want as long as I leave before 11:00 when the next person comes in. Each 2.5-hr stint at the lab yielded about 30 seconds of video, not all of which was interesting; even in time-lapse, whelks operate at a snail's pace. Still, I was surprised at how active the female could be while she was apparently doing nothing.

The freshly deposited capsules are a creamy white color, as are the embryos inside them. As the embryos and then larvae grow, they get darker. Each of the fertilized eggs develops through the first molluscan larval stage, called a trochophore larva, within its own egg membrane. The embryo, and then the trochophore, survives on energy reserves provided by the mother snail when she produced the egg. These larvae don't hatch from their egg membrane until they've reached the veliger stage.

Pumpkin seed-shaped egg capsule of the whelk Kellettia kellettii, 13 mm tall.
Egg capsule of Kellettia kellettii
2020-06-20
© Allison J. Gong
Veliger larva of Kellettia kellettii
2020-07-25
© Allison J. Gong

The veliger larva gets its name from a lobed ciliated structure called a velum. Gastropods and bivalves have veliger larvae. As you might expect, the bivalve veliger has two shells, and the gastropod veliger has a coiled snail shell. These Kellettia veligers have dark opaque patches on the foot and some of the internal organs. That coloration is what you see in the photo of the egg capsule. You can see below which of the egg capsules are the oldest, right?

Mated pair of Kellettia kellettii and their egg capsules
2020-07-25
© Allison J. Gong

By the time the veligers emerge from the egg capsule, they have burned through almost all of the energy packaged in the yolk of the egg. They need to begin feeding very soon. The current generated by the beating cilia on the velum both propels the larva through the water and brings food particles to the larva's mouth. The velum can be pulled into the shell, and, as in any snail the opening to the shell can be shut by a little operculum on the veliger's foot. As is the case with most bodies, the veliger is slightly negatively buoyant, so as soon as it withdraws into the shell it begins to sink. However, once the velum pops back out the larva can swim rapidly.

Watch how the veliger swims. You can also see the heart beat!

So now the egg capsules are being emptied as the larvae emerge. I'm not keeping the veligers, so they are making their way through the drainage system back out to the ocean. As of now there are no iNaturalist observations of Kellettia kellettii in the northern half of Monterey Bay, so it appears that for whatever reason the whelks have not been able to establish viable populations here. Or it might be that the whelks are here but there aren't enough SCUBA divers in the water to see them.

These little veligers will be very lucky if any of them happen to encounter a subtidal habitat where they can take up residence as juvenile whelks. Even for animals that show a relatively high degree of parental care, the chances of any individual larva surviving to adulthood are exceedingly small. However, for the reproductive strategy of Kellettia to have evolved and persisted, there must be a payoff. In this case, the reward is an equal or greater reproductive success compared to snails that simply broadcast thousands of unprotected eggs into the water. Some gastropods such as the slipper shell Crepidula adunca, take parental care even further than Kellettia; in this species the mother broods her young under her shell until they've become tiny miniatures of herself, then she pushes them out to face the world and find a turban snail to live on. Crepidula adunca does not have a swimming larval stage at all. The fact that we see a variety of strategies—many eggs with little care, fewer eggs with more care, and brooding—indicates that there's more than one way to be successful.

What do you think?

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: