Skip to content

3

Way back in 2015 I wrote about some Ulva that spawned in a bowl at the lab, and delved into the mysteries of reproduction in the green algae. This morning I was out at Franklin Point and saw this:

Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong

I had seen the sea lettuces (Ulva spp.) spawning in these high pools at Franklin Point before, and usually cursed the murkiness of the water. But today the water was dead calm, with the tide low enough that there were no waves to slosh into the pools. The result was a gorgeous marbled swirl in the water. The patterns were stunning.

Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong
Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong
Yellow streams of algal spawn in a shallow tidepool
Spawning algae at Franklin Point
2021-04-01
© Allison J. Gong

What these photos show is the Ulva releasing either spores or gametes. Without microscopic examination it's impossible for me to know whether these tiny cells are spores or gametes. What I can say is that the spawn is released from the distal ends of the thallus, making the body of the alga look ragged.

Sea lettuce in a tidepool. Some blades are clear.
Sea lettuce (Ulva sp.) at the edge of a tidepool at Franklin Point
2021-04-01
© Allison J. Gong

The parts of the thallus that have already spawned are now clear. The tissue itself will soon disintegrate, leaving behind only the healthy green parts, which should be able to regrow.

All of these photos were taken in pools where the spawning itself had either completely or mostly stopped. Obviously when the tide comes back all of this yellow spooge will get mixed up. It's only when the water is perfectly still that these streams would form. It was hard stepping around the pools to take the photos, as the last thing I wanted to do was stomp my big booted foot into a pool and disrupt the beautiful patterns. Fortunately the sun angle was a little cooperative this morning, and I was able to find a pool where active spawning was happening.

What appears to be an act of destruction—the alga's brilliant green thallus being reduced to yellow streaks that drift away with the tide—is really an act of procreation. This is terminal reproduction, literally the last thing an organism does before it dies. Salmon do this, as do annual plants. The sheer amount of algal spawn in these tidepools is astounding. Imagine the number of 2-micron cells needed to color the water to this degree. But if reproducing is the last thing you're going to do in your life, you might as well go all in on your way out, right?

The other day I was on a field trip with a couple of students in the Natural History Club, at Younger Lagoon. We had permission to go down into the lagoon itself, where we chased tiny red mites around rocks in the intertidal without getting caught by waves, observed a very interesting interaction between a coyote and assorted water fowl, and witnessed killdeer mating. Did you know that in killdeer the actual copulation is preceded by about half a minute of massage? Neither did we! The purpose of the field trip, other than merely to be outdoors looking at cool stuff, was to spend some time doing focused nature journaling. As a result I didn't have my big camera with me. But I did have the good binoculars, and got to watch all of the action closely.

Nature journaling should be part of any natural history club. Over the years I have seen an increase in the tendency to equate nature journaling with science illustration or other types of art. This conflation is what causes people to believe that they can't keep a nature journal because they don't produce museum-quality works of art. While I appreciate a beautiful science illustration as much as anybody else, a nature journal serves a completely different purpose. A nature journal's job isn't to be beautiful. Its job is to be informative.

If you were to compare my nature journal entry with a photograph of the site, you would see that my sketch is nowhere near realistic in the sense of looking exactly like the real thing. I've compressed the entire lagoon into a short stretch that I could fit in these two pages. But I think the sketches and notes do convey the fascinating things what we saw that day. And even if I were not familiar with Younger Lagoon, I would be able to look at these pages and remember them. That's the job of a nature journal.

Entry in my nature journal

I returned to Younger Lagoon two days later with the camera in tow, hoping that some of the birds we'd seen on Monday would still be there on Wednesday. In addition to the usual Canada geese and mallards, I hoped to shoot a couple of water birds that I didn't recognize.

Let's start with the obvious:

Three Canada geese in flight
Trio of Canada geese (Branta canadensis) coming in for a landing
2021-03-24
© Allison J. Gong

All told, there were a couple dozen Canada geese, in the water, in the air, and on the sand. They were a noisy bunch, as usual. Except for when the coyote showed up. Read that little story in my nature journal.

Now take a look at these geese:

Gaggle of 12 Canada geese and one greater white-fronted goose swimming in Younger Lagoon
Gaggle of geese
2021-03-24
© Allison J. Gong

See the one goose that doesn't belong? That was the mystery goose I saw on Monday, and was fortunate enough to see again on Wednesday. From the photos in my bird field guide—National Geographic Field Guide to the Birds of North America—I thought it might be a greater white-fronted goose (Anser albifrons), although I couldn't be entirely certain. I knew I hadn't seen one before, but a consultation with Cornell's All About Birds verified the ID. iNaturalist shows only a handful of observations of A. albifrons in the Monterey Bay region. The greater white-fronted goose is a long-distance migrator, breeding on the tundra of the high Arctic and overwintering in California's Sacramento and San Joaquin Valleys and the Gulf coast of Texas and Louisiana.

Canada goose in water, greater white-fronted goose on land with wings outspread
Greater white-fronted goose (Anser albifrons)
2021-03-24
© Allison J. Gong

A third goose, and another winter-only bird, is the snow goose. It is a little bigger than the greater white-fronted goose. While the word "snow" implies white plumage, snow geese also come in a blue form, which is a dark blueish gray with a white head. The blue coloration is due to a single gene, and the allele for blue is incompletely dominant over the allele for white. The blue and white morphs are the same species and interbreed freely. The offspring of a pure blue bird and a pure white bird will be dark, but may have a white belly. Goslings from pure white parents will be white, and those from pure dark parents will be mostly dark but may have some white.

Snow geese (Anser caerulescens)
2021-03-24
© Allison J. Gong

Of the two snow geese in the photo, the one in the front is all white except for the black wing tips of the species, while the one in the back has more dark coloration. In the photo the beak looks dark, but in better light it's as pink as on the bird in the front.

So that's three species of geese. Now whose butts are these?

Duck butts at Younger Lagoon
2021-03-24
© Allison J. Gong

These tails belong to American wigeons (Mareca americana), a male and female pair in the background and a lone male in the foreground. As you might guess from the behavior, wigeons are dabbling ducks, foraging on aquatic vegetation. Like the greater white-fronted goose and snow goose, these are also winter visitors to California's waterways, and will soon be headed north.

In their winter plumage, the wigeons are rather dull. The breeding male has a brilliant green patch extending backwards from his eye and a broad white streak from the top of the bill over his head. During the winter the green patch becomes is much less conspicuous, although the white streak remains.

Trio of wigeons, with their tails sticking up out of the water
American wigeon (Mareca americana)
2021-03-24
© Allison J. Gong

Three species of waterfowl. I couldn't get the snow geese to cooperate and make up the quartet.

Greater white-fronted goose, American wigeon, and Canada goose
Left to right: greater white-fronted goose (Anser albifrons), American wigeon (Mareca americana), and a pair of Canada geese (Branta canadensis)
2021-03-24
© Allison J. Gong

Living as we do along the Pacific flyway, we find that spring and autumn are great times for watching birds as they migrate between summer breeding grounds and wherever they overwinter. Sometimes I think it's rather unfortunate that I don't get to see these birds in the glory of their breeding plumage, but that's okay because I get to see them in the winter. And the birds that left here for the winter are returning: I saw the first barn swallow of the season right after the vernal equinox! Soon they and the cliff swallows will be building their nests on the buildings at the marine lab. At home, the first of the season's hooded orioles flew past the back deck. He may have been on his way to a nesting site in a palm tree down the street. There is so much going on right now. I do love the spring!

Intact shells are a limited resource in the rocky intertidal. Snails, of course, build and live in their shells for the duration of their lives. A snail's body is attached to its shell, so until it dies it is the sole proprietor of the shell. Once the snail dies, though, its shell goes on the market to whoever manages to claim it. Empty shells tend not to remain on the market for long.

Hermit crabs also live inside snail shells. They are the ones that compete for empty shells when they do become available. Here in California, at least, the hermit crabs can't kill snails for their shells; they have to wait for a snail to die. And once a shell comes on the market, it will have a taker even if it's not the ideal size for the crab. It's not at all uncommon to see hermit crabs that can fit only their abdomen into the shell, leaving the head and legs exposed and vulnerable. On the other end of the spectrum, many hermit crabs are so small that they can pull into the shell and not be seen by an inquisitive tidepool visitor. Anybody taking a snail shell home as a souvenir—where such takes are allowed, of course—must be certain that there is no tiny hermit crab hiding deep in the depths.

Hermit crab in black turban snail shell
Hermit crab (Pagurus samuelis) in shell of turban snail (Tegula funebralis) at Point Piños
2015-05-09
© Allison J. Gong

From a hermit crab's perspective, the best shell is one that is big enough to retreat into but light enough to be carried around. Snail shells come in a variety of shapes and corresponding internal volumes. Turban snails, with their roughly spherical shape, have a large interior space and are coveted by larger hermit crabs. For example, the grainy hand hermit crab (Pagurus granosimanus) seems to really like both black and brown turban snail shells.

Original inhabitant and builder of the shell:

Brown turban snail partially withdrawn into shell
Brown turban snail (Tegula brunnea) at Pistachio Beach
2021-02-09
© Allison J. Gong

And opportunistic second inhabitant of the same type of shell:

Grainy hand hermit crab in turban snail shell
Grainy hand hermit crab (Pagurus granosimanus) in brown turban snail (Tegula funebralis) shell
2018-06-01
© Allison J. Gong

Other snails are not even remotely spherical. Olivella biplicata, for example, is shaped like the pit of an olive. Unlike Tegula, of which both intertidal species are found in rocky areas, O. biplicata burrows in sand. Note the shape and habitat of this olive snail:

Olive snail
Olive snail (Olivella biplicata) burrowing through sand at Whaler's Cove
2019-11-24
© Allison J. Gong

These olive snails have a smaller internal volume, and thus tend to house smaller hermit crabs. Young individuals of P. granosimanus can be found in olive snail shells, but they quickly outgrow the cramped quarters and need to find a larger home. Smaller hermits such as Pagurus hirsutiusculus, though, are often found in olive shells.

Any hermit crab that finds itself robbed of its snail shell has a short life expectancy. The front end of the hermit resembles the front end of any crab, with the familiar armored legs, claws, eyestalks, and antennae. But the abdomen is soft and unarmored, covered by only a thin cuticle. The abdomen is coiled to follow the coiling of the snail shell, which allows the crab's body to curl around the columella, the central axis around which the shell spirals. In this way the crab can hang onto its snail shell and resist a tug by a would-be predator. A strong enough tug, though, will rip the crab's front end (head + thorax) away from its abdomen. So if you ever find yourself with a hermit crab in hand, do not be tempted to remove it from its shell by yanking it out!

The next time you encounter gastropod shells in the tidepools and want to know whether the inhabitant is a snail or a hermit crab, watch to see how it moves. Hermit crabs scuttle, as crabs do, while snails glide along very slowly. You would also notice a difference as you pick up the shell: snails stick to the rock with their foot, which you will feel as a suction. Hermit crabs don't stick at all, so if the shell comes away easily it likely houses a crab instead of a snail. See? Easy peasy lemon squeezy!

Sometimes even a well-known site can present a surprise. Here's an example. Yesterday I went up to Davenport to scope things out and see how the algae were doing. This is the time of year that they start growing back after the winter senescence. I also took my nature journal along, hoping to find a spot to sit and draw for a while.

The first thing I noticed was the amount of sand on the beach. Strong winter storms usually carve sand off the beaches, making them steeper. And during the calmer months of summer the beaches are flatter and less steep. Yesterday the beach was very thick and flat. It makes trudging across the sand in hip boots much easier!

The accumulation of sand meant that I could walk around the first point. Unless the tide is extremely low, such as we see around the solstices, the water is too deep for that. But yesterday I walked around it, and it wasn't until I got to the other side that it occurred to me that: (1) hey, I walked around the point; and (2) I could do that only because there was so much sand. See, a thick beach with a lot of sand makes a mediocre low tide feel lower because the water isn't as deep as it would be if the beach were thinner. When the tide isn't low enough for me to walk around the point, I have to clamber down a cliff. The cliff height varies depending on how much sand has built up, obviously, but is about head height for me. Getting down usually involves scooting on my butt and hoping my feet land on something that isn't slippery. As with most climbing, up is easier and less scary than down.

It's hard to imagine the amount of sand there was yesterday. Look at this picture.

Flat rock area and sandy area
North of Davenport Landing Beach
2021-02-08
© Allison J. Gong

See how the rocks in the foreground end? Usually that's the edge of the cliff. Yesterday I could have just taken a tiny step off the top of the cliff onto sand. That's over 1.5 meters of sand in that one spot! If the couple in the background were visiting this area for the first time, they'd have no idea of the conditions that made it so easy for them to get out onto the reef.

There was a lot of sand in the channels between rocks, too.

Sand between rocks in the intertidal
Intertidal area north of Davenport Landing Beach
2021-02-08
© Allison J. Gong

Normally those channels are deeper. You can see that some anemones were able to reach to the surface of the sand, but many more are buried, along with any other critters and algae unfortunate enough to be attached to the lower vertical surfaces. And while some of them will either suffocate or be scoured off as the sand washes away, many will survive and be ready to get on with life.

The second surprise of the day was a bright orange object. What I could see of it was about as big as my thumb, and at first I thought it was a nudibranch. Then when I crept closer for a better look, what popped into my head was "snailfish". Which was an odd thing, because I'd never seen a snailfish before. But something about the creature's posture looked somehow familiar.

Orange fish with large head and tail wrapped around the body
Tidepool snailfish (Liparis florae) at Davenport Landing
2021-02-08
© Allison J. Gong

Fortunately I had the presence of mind to take photos before trying to draw this little fish, because this is all I had time to get:

When I spooked the critter it took off really fast, confirming that it was no nudibranch. It was, indeed, a snailfish! It came to rest in a small hole in a rock, from where it looked out at me.

Tidepool snailfish (Liparis florae) at Davenport Landing
2021-02-08
© Allison J. Gong

The snailfishes are a very poorly studied group. As a group they are related to the sculpins. There are snailfishes throughout the northern temperate and polar regions, from the intertidal to the deep sea. iNaturalist shows 43 observations of L. florae, eight of which are in California. Before yesterday, none had been recorded at Davenport Landing.

Map of northeast Pacific coast, showing sighting of tidepool snailfish recoreded in iNaturalist
Observations of tidepool snailfish (Liparis florae) recorded in iNaturalist
2021-02-09
© iNaturalist

So there you have it, a snailfish! We don't know much about any of the snailfish species, even the intertidal ones. They apparently have pelvic fins modified to from a sucker, similar to the clingfishes, but I didn't have a chance to examine this specimen closely enough to confirm that. I don't know why they are called snailfishes, either. They're not snail-shaped at all.

Now, about that thing up there where I said "snailfish" came to mind even though I'd never seen one before. That happens quite a bit—a name will jump into my head before I've had a chance to think about it. Sometimes I'm wrong, but often I'm right. I know I hadn't seen a live snailfish before, but obviously I'd seen photos of them or I wouldn't have been able to recognize this orange creature as being one. It's fascinating how the brain forms search images, isn't it?

During what has become my daily check to see what's going on in Younger Lagoon, I got totally lucky and was able to see and photograph lots of birds. A morning with mostly cloudy skies meant good light for picture-taking. So I took lots of pictures! Some of these are series and need to be viewed in order to see the action. Sure, I could have just shot videos, but where's the fun in that? Sometimes still photos show a lot more than video.

It was a great day to watch wading birds! Legs and beaks come in varying lengths, and a particular species' combination of beak length and leg length determine where and how the bird forages.

Long-billed curlews, snowy egret, and marbled godwit on the beach at Younger Lagoon
Shorebirds at Younger Lagoon. Left to right: Two Long-billed curlews (Numenius americanus); snowy egret (Egretta thula); long-billed curlew; marbled godwit (Limosa fedoa)
2021-01-30
© Allison J. Gong

While the long-billed curlew (N. americanus) has the longest beak-length-to-head ratio of any bird, the marbled godwit and whimbrel also have impressively long bills. In the photo below, the three birds with slightly downcurved beaks are whimbrels (Numenius phaeopus) and the one bird with the two-toned straight beak is the godwit (Limosa fedoa). Most of the godwits I've seen have beaks that are a smidge upturned, but this one looks pretty straight to me.

Whimbrels and marbled godwits in the surf zone at Younger Lagoon
Shorebirds at Younger Lagoon. Three whimbrels (Numenius phaeopus) with downcurved beaks and one marbled godwit (Limosa fedoa) with straight beak
2021-01-30
© Allison J. Gong

All of these birds forage by probing the sand with their beaks. All sorts of infaunal invertebrates are taken, and the mole crab Emerita analoga is a favored prey item. Obviously a longer beak allows for deeper probing in the sand, and the variation in beak lengths among the shorebird species may allow for niche partitioning. In other words, a long-billed curlew can reach down for prey items that are unavailable for birds with shorter beaks. The flip side of this equation is that birds with the "short" beaks might be better at picking up prey buried that are buried at shallow depths.

Prey are also distributed patchily along the beach itself, from the surf zone to the dunes, and these birds forage in the entire range. The length of the legs determines how far down into the surf zone they can go. When the beach is steep, as it is now at Younger Lagoon, the birds don't have much time to dig around in the surf zone before the next wave comes up. Click through the slide show to see this group of godwits, curlews, whimbrels, and a snowy egret react to an oncoming wave. It's important to note that while these birds do have some waterproofing in their feathers, they do not swim. Nor can they take flight if their feet aren't on the ground. Getting swept up by a wave and carried off the beach would likely be deadly for them.

The long-billed curlew is a favorite of mine, because I can't imagine what it would be like to go through life with a 2-meter beak sticking out of my face. They are fun to watch, and can probe remarkably fast with that long beak. This is one of the phenomena that is best shown by video.

You can watch how the birds forage within the surf zone, as in the slide show above, and also how long-billed curlews probe the sand higher up the beach.

Shorebirds foraging at Younger Lagoon
2021-01-30
© Allison J. Gong

These long-legged wading birds also feed in protected bodies of water and estuaries. All of these species can be seen at Elkhorn Slough as well as on the open coast, as one would expect from the Slough's position along the Pacific Flyway. Some birds migrate to California from far away. Marbled godwits, for example, spend the summer breeding season in the interior regions of North America, and winter along the Pacific, Gulf of Mexico, and Atlantic coasts. The long-billed curlew also breeds in the interior of the continent. Snowy egrets, on the other hand, are year-round residents.

I am grateful to have access to places like Younger Lagoon, where I can spend time outdoors without other people around, remove my mask, and take pictures of birds. I love that the Younger Lagoon Reserve has so many different habitats to explore, from ocean to beach to dunes to coastal scrub, in a small area. Fingers crossed that sooner rather than later, we'll be able to once again bring students there to study the natural world in the Reserve's outdoor classrooms.

In terms of weather, this has been the first real week of winter we've had so far this season. But finally we're getting some action from an atmospheric river, and it is bringing both much-needed rain and the threat of mudslides in mountain regions that were badly burnt just a few months ago.

Graphic showing what atmospheric rivers are and how they affect precipitation

During an El Niño event, the probability of higher-than-average rainfall in California is usually due to what are called Pineapple Express storms. These warm, wet storms occur when the atmospheric river is to the south and picks up and transports water from the tropics. La Niña, which is the counterpart to El Niño, typically results in drier-than-average conditions in California, but when the atmospheric river does come into play it comes from the north and is cold.

We are currently at the mercy of La Niña, and weather forecasters predict these conditions will continue through February and then begin to wane through the early spring. This means that the storms we've had over the past several days have been cold. According to our weather station, on Monday 18 January the high temperature was 24ºC (75ºF), and a week later on Monday 25 January the high was 12ºC (53ºF). It has continued to be chilly throughout the week. Today, Friday 29 January, we're getting a break between storm systems and it's beautifully sunny. Because of the sun it feels warmer, but the actual air temperature probably won't get much higher than it has been already this week.

Yesterday we were hit by what was probably the strongest of the storms in this particular atmospheric river. At the marine lab the waves were routinely splashing up and over the cliffs. When that much water crashes into solid land, the pounding is felt as much as it is heard. After doing my chores I wandered over to Younger Lagoon to see what was going on. I wanted to see if the lagoon had broken through the sand bar.

I spent some time watching the ocean, and this is what I saw:

Storm waves at Younger Lagoon
2021-01-28

That sand bar forms as sand accumulates on the beach during the summer, following the typical sand cycle along the California coast. Younger Lagoon does not drain a river, so there is not a constant flow of fresh water down to the ocean. There is some run-off from the surrounding agriculture fields, but the vast majority of water flowing through the lagoon is run-off from rain. It's that heavy flow of fresh water that sometimes breaches the sand bar and allows water from the ocean to mix with water in the lagoon.

Given how much rain we'd had, I thought it likely that the lagoon would have breached. But as you can see from the video above, it had not. Clearly, there hasn't yet been enough fresh water flow through the lagoon to break through the sandbar.

So we're still waiting for that event. I suspect that once it does, we'll know because of the smell.

In the meantime, the ocean continued to pound the coast. I was wearing my foul weather gear so I went to Natural Bridges to watch the waves slam against the rock formations. That was a fun excursion! The big swells were coming in so fast that the deep BOOM-BOOM-BOOM was almost continuous. Close to shore the water was a constant froth of movement.

Storm waves at Natural Bridges
2021-01-28

You can see how high the waves were hitting against the cliff. The mist blew quite far across the parking lot, and I went home with saltwater drying in my hair. Fortunately I got to spend the rest of the day indoors, drinking tea and keeping dry. Winter storms are great fun, as long as you don't have to be out in them!

4

On the penultimate day of 2020 I met up with my goddaughter, Katherine, and her family up at Pigeon Point to have two adventures. The first one was to find a marble that had been hidden a part of a game. We got skunked on that one, although the marble was found after we left and the hider had sent an additional clue. The second adventure was an excursion to the tidepools. I've had a lackadaisical attitude towards the afternoon low tides this winter, not feeling enthusiastic about heading out with all of the people and the wind and having to fight darkness. But the invitation to join the marble hunt, on a day with a decent low tide, meant that I could spend a good deal of quality time with Katherine.

It is not unusual for a promising low tide to be cancelled out by a big swell. It happens, especially during winter's combination of afternoon lows and occasional storms. The swell yesterday was pretty big.

Here's the view to the north, from Pigeon Point:

Looking north from Pigeon Point
View to the north from Pigeon Point
2020-12-30
©Allison J. Gong

All that whitewash breaking over the rocks is not good for tidepooling, especially with small kids in tow.

This is how things looked to the south of the point:

View to the south from Pigeon Point
2020-12-30
©Allison J. Gong

This is Whaler's Cove, a sandy beach that lies on the leeward side of the point itself. See how the water is much calmer? It's amazing how different the two sides of the point are, in terms of hydrography, wind, and biota. The south side is much easier to get to, especially for newbies or people who are less steady on their feet. Being sheltered from the brunt of the prevailing southbound current means that the biological diversity is, shall we say, a bit subdued when compared to what we see on the north side of the point.

I first took Katherine tidepooling when her sister, Lizzie, was an infant riding in her mom's backpack. Katherine was about four at the time. Her mom and I were suprised at how much she remembered. She recognized the anemones right away, even the closed up cloning anemones (Anthopleura elegantissima) on the high rocks. She remembered to avoid stepping on them—that's my girl!

She wasn't all that keen on touching the anemones, though, even after we told her it feels like touching tape.

Giant green anemone in tidepool
Giant green anemone (Anthopleura xanthogrammica)
2020-12-30
©Allison J. Gong

She did like the sea stars, too. Purple is my favorite color and I think hers, too, so the purple and orange ochre stars were a hit. It was nice to see two large healthy ones.

I had some actual collecting to do, so it was a work trip for me. Late December is not the best time to collect algae, but I wanted to bring some edible seaweeds back to the lab to feed animals. We haven't had any kelp brought in since the late summer, and urchins are very hungry. They will eat intertidal seaweeds, though, and when I go out to the tidepools I bring back what I can. It will be a couple of months until we see the algae growing towards their summer lushness, but even a few handfuls of sea lettuce will be welcome to hungry mouths.

Bright green sea lettuce growing with red algae
Sea lettuce (Ulva sp.)
2020-12-30
©Allison J. Gong

Katherine and I walked up the beach for a little way to study one of the several large-ish crab corpses on the sand. This one was a molt rather than an actual corpse.

Rock crab molt on sand
Rock crab (Romaleon antennarium) molt
2020-12-30
©Allison J. Gong

Katherine found the missing leg a little way off, and we discussed why we call these limbs legs instead of arms. "They use their claws to pinch things, like hands," she said. Not wanting to get into a discussion of serial homology and crustacean evolution with a 6-year-old, I told her that calling the claws "hands" isn't a bad idea, since they are used a lot like the way we use our hands. But, I continued, the crab walks on its other limbs like we walk with our legs, so can we call those legs? She was happy to agree with that. I can tell I will have to be careful about how I explain things to her, so that she doesn't come up with some wonky ideas about how evolution works.

In the meantime, Lizzie, the little sister, was having a grand old time. She flooded her little boots without a complaint and, after her mom emptied the water from them, squelched happily along with soggy socks. That girl may very well grow up to be a marine biologist!

Once the sun went behind the cliff it started getting cold. With one child already wet we decided to head back. On our way up the beach we saw this thing, which I pointed out to Katherine:

"What is it?" she asked. When I asked what she thought it was she cocked her head to one said and said, "It looks like a rock." Then I told her to touch it, which she didn't want to do. So I picked it up and turned it over, to show her the underside:

Gumboot chiton (Cryptochiton stelleri)
2020-12-30
©Allison J. Gong

These big gumboot chitons do look more interesting from this side, because you can at least see that they are probably some kind of animal. Katherine had seen some smaller chitons on the rocks, so she had some idea of what a chiton is, but these are so big that they don't look anything like the ones we showed her earlier. Plus, with their shell plates being covered with a tough piece of skin and invisible, there are no outward signs that this bizarre thing is indeed a chiton. Katherine was not impressed.

At this time of year, when the sun decides to go down it goes down fast. But as we were walking back across the rocks the tide was at its lowest, so there was more terrain to explore. Then it was back up the stairs to the cars, where we could get warm and dry.

Beach and lighthouse at Pigeon Point

Oh, and Katherine and her mom and sister were able to find the hidden marble! They also hid one of their own for someone else to find.

Still more or less under quarantine shutdown due to COVID19, I haven't been doing much outdoor stuff over the past several months. What with the pandemic and horrid air quality due to wildfires throughout the state, spending time in places I would normally like to hang out simply hasn't been possible. We're still getting too many out-of-the-area visitors for me to feel comfortable being around people, and weekends are especially bad. But last weekend I went to Moss Landing to take pictures of birds and other wildlife—I needed visual aids for a virtual lab my students will be doing in a few weeks.

It's the time of year for birdwatchers to get excited about winter visitors. I've had golden-crowned sparrows in the canyon behind the house for almost a month now, but I hadn't been down to a beach in a while. Moss Landing is a great place for birdwatching, because you can explore the estuarine habitat of Elkhorn Slough, the sandy beach, and the harbor during a 2-mile walk. That's three distinct habitats for very little effort!

Starting at the tidal marsh, I always keep an eye out for the long-billed curlew (Numenius americanus). They have the largest beak-to-head ratio of any bird.

Long-billed curlew (Numenius americanus) in salt marsh
Long-billed curlew (Numenius americanus)
2020-10-10
© Allison J. Gong

One of my favorite winter visitors to the marsh area is the willet (Tringa semipalmata). Unlike most shorebirds that are speckled or mottled, willets in winter plumage are a beautiful soft gray-ish brown color. Every time I see a willet I ask myself, "Willet, or won't it?"

Willets in marsh at low tide
Willets (Tringa semipalmata)
2020-10-10
© Allison J. Gong

And when they take off in flight, willets show these striking black and white wing patterns. They always take me by surprise, even though I know to expect it.

Willet in flight, showing white flashes on wings
Willet (Tringa semipalmata) in flight
2020-10-10
© Allison J. Gong

A whole flock of willets taking off at once is quite an impressive sight!

Flock of willets in flight
Willets (Tringa semipalmata) in flight
2018-11-14
© Allison J. Gong

From the marsh it's a short walk over the dune and onto the beach.

I always look forward to walking this beach because of the dead things. Don't get me wrong, the living things are fun to see, but in some ways the dead critters can be more informative. For every species there is always some baseline level of mortality in the ocean, so you expect a certain number of dead things to wash up. However, an unusually high number of corpses could indicate that something is going on at sea. This trip I didn't see very many dead critters: just a few grebes that had been there for a while, nothing out of the ordinary.

Oh, and an otter pup. At least, I'm pretty certain it was an otter.

Yes, we came across a dead sea otter pup, my first ever.

Dead sea otter pup on the beach
Dead southern sea otter (Enhydra lutris nereis) on the beach
2020-10-10
© Allison J. Gong

The body was missing a head, but the parts that remain were a bit longer than my booted foot. Although most of the soft tissue had been scavenged, the carcass had distinct paws, meaning it wasn't any kind of pinniped (seal or sea lion). Also, pinnipeds don't have fur like this, as they rely on blubber for thermoregulation. Sea otters, on the other hand, have the densest fur of all mammals, with the oft-cited 1 million hairs/in2.

But let's be honest. I like the beach because I like photographing birds, and there is always interesting bird life at this beach. I'm not one of the crazy bird people who keep a life list and need to be the first person to spot a particular something-or-other. And, unlike the idiots I saw tramping through the pickleweed in pursuit of a Say's phoebe that day, I don't climb over fences and trespass where I'm not supposed to be. Besides, even the everyday backyard birds are fun to watch. Whoever says that familiarity breeds contempt certainly is not a naturalist!

And who doesn't love a snowy plover or two?

Snowy plovers (Charadrius nivosus)
2020-10-10
© Allison J. Gong

The snowies aren't nesting at this time of year so the upper part of the beach isn't roped off. They do still get disturbed by people wandering around, who probably don't even know the birds are there. They (the snowies, that is) are so tiny that when they hunker down behind a divot in the sand they disappear completely. If you sit or stand quietly, they will pop up and make short dashes from hillock to pile of beach wrack and back again, feeding on the insects and crustaceans they find.

In addition to the snowy plovers, another tiny "peep" bird runs around on the beaches, often in large groups. These are the sanderlings, Calidris alba. I've only ever seen them in nonbreeding plumage, as they nest in the high Arctic.

Sanderlings (Calidris alba)
2020-10-10
© Allison J. Gong

Sanderlings are the little birds that run back and forth from the waves. As a wave recedes the sanderlings frantically stab their stout beaks into the sand, grabbing up small mole crabs and other crustaceans that are right at the surface. When the next wave arrives the sanderlings run back up the beach. They have short legs and don't swim, so getting swept out to sea would be a very bad thing for them.

Sometimes even the long-legged shorebirds forage on the beach. I've seen the curlew there, as well as whimbrels and godwits. This day the godwits were stealing the show.

Marbled godwits (Limosa fedoa)
2020-10-10
© Allison J. Gong

The godwits, with their longer legs, are able to stand their ground when the waves wash up. They can catch food that is buried more deeply into the sand. On mudflats they pick their way over the flat at low tide, digging for worms, clams, and crustaceans. They can feed on a mudflat only at low tide. But on the beach they can feed at any time, just moving with the tide as it floods and ebbs.

And my friend the long-billed curlew was there on the beach, too!

Long-billed curlew (Numenius americanus)
2020-10-10
©Allison J. Gong

The curlews are not as eager to forage in the waves themselves as the godwits seem to be. The curlews might wander down to where their ankles are swashed by the waves, but do not seem to like getting wetter than that. But that bill can probe very deeply into the sand or mud. I've watched them feeding on mole crabs on the beach, and on worms on the mudflats.

Autumn and winter are good times to watch birds around here. There's a bit of a lull in bird activity once the swallows leave depart for the south and before the winter residents show up. For me, autumn begins when the golden-crowned sparrows arrive in the neighborhood, which this year was September 25. I'm listening to them now as I write this! Being located on the Pacific Flyway means we get lots of birds resting for a bit on their migration even if they don't winter here. I'll try to get out to Moss Landing during the winter months, to keep track of the avian comings and going.

2

22 August 2020

Scorched tanoak (Neolithocarpus densiflorus) leaves

As I write these words, a massive and powerful wildfire is raging through the Santa Cruz Mountains, approaching the city of Santa Cruz from the north and west. This morning's stats:

  • 63,000 acres burnt/burning
  • 5% containment
  • 1157 people fighting the fire (roughly 10% of what is needed to fight a fire of this size)
  • firebreaks constructed to protect the city and university
  • firefighters coming from out of the area and out of state

Much of the terrain burning is redwood forest. Big Basin Redwood State Park has burnt extensively. All park buildings and campgrounds have been severely damaged if not destroyed. Up the coast from me at Waddell Creek, the fire burned all the way to the ocean. Rancho del Oso, the nature center at the bottom of Big Basin at Waddell Creek, is in the middle of the forest; I don't know whether or not it still stands.

Each of these leaves tells the story of the destructive power of Nature. Most of them are from tanoak trees (Neolithocarpus densiflorus) or California bay laurel (Umbellularia californica), both of which are very common understory trees in redwood forests. For the past week, charred leaves have been tossed by updraft and carried along the wind, to be deposited miles away. Fortunately they are no longer acting as live embers when they touch down.

My camera gear is all packed up, in case we need to evacuate. I took these photos with my phone when I went to the marine lab this morning. They are completely unaltered. If they look a little too orange, well, that's how everything looks right now.

Why did I feel compelled to take these pictures? I think it's because the damage to Nature caused by Nature should be acknowledged as well as the damage to human lives, homes, and health. What I'm about to say may sound insensitive. I do not want to diminish the human tragedy of lost homes, livelihoods, and health. But I do want to shift my personal focus a little bit, because dwelling on all that has been and could be lost only renders me unable to function. If I can think about the future, perhaps even the long-term future far beyond my own life, I feel more grounded and ready to deal with the now.

What is and has been happening to the redwood forests is absolutely tragic. But the redwoods themselves are fire-adapted and resilient. The forest will recover. Already there are Facebook groups organizing to help the residents who have been displaced, begin the long and arduous process of cleaning up once the fire crews give the okay to do so, and start thinking about long-term monitoring of the forest's recovery. From a purely ecological perspective, it will be fascinating to document the process of secondary succession.

But before any of that can happen, human safety is the top priority. We are far from the end of this ordeal. While the weather has cooperated the past couple of days, with cooler temperatures and higher humidity thanks to the return of the marine layer, the forecast calls for 20-30% chance of lightning weather Sunday through Tuesday. That means more lightning strikes and more fires starting. We were visited by a firefighter yesterday afternoon, who told us that while we were not in the immediate evacuation zone we need to be ready to go. She advised us to do the usual fire prevention stuff—clear out a defensible space around the house, make sure there's no leaf litter or debris on the roof, etc. So we did. And now we stay indoors as much as possible, as the air quality outside is dismal. And we wait.

5

On the afternoon of July 31, 2020 the world of invertebrate biology and marine ecology in California lost a giant in our field. Professor Emeritus John S. Pearse died after battling cancer and the aftereffects of a stroke.

John Pearse in the intertidal at Soquel Point
2017-05-28
© Allison J. Gong

John was one of the very first people I met when I came to UC Santa Cruz. Before we moved here, my husband and I came and met with John, who was not my official faculty sponsor but agreed to show us around so we could check out different areas for a place to live. In fact, I had applied to the department to do my graduate work in John's lab, but because he was considering retirement the department wouldn't let him take on a new Ph.D. student. But when we needed some help getting acquainted with Santa Cruz, John and his wife, Vicki Buchsbaum Pearse, graciously let us stay at their house and spent a day driving us around town and showing us eateries as well as potential neighborhoods.

By happenstance we ended up living down the hill from John and Vicki. We had met their blue duck, Lily, and I used to fill spaghetti sauce jars with snails from our tiny yard and trudge up the hill to feed them to her. She gobbled them up like they were her favorite treat.

As one of the regional experts in invertebrate biology, John was on all of my graduate committees. There were always a half-dozen or so of us grad students working with invertebrates, and we all tended to hang out together. John was one of the things we shared in common. And even if he wasn't technically on one's committee, he would always be available for consultation or advice as needed.

When John retired, he didn't leave the campus. He remained a presence at the marine lab, and still did field work. He started incorporating young students in his long-term intertidal monitoring research, which morphed into the LiMPETS project. The combination of working with students while producing robust scientific data was the perfect distillation of John's legacy. He said this about LiMPETS:

This is one of the best things I could ever do to enhance science education and conservation of our spectacular coastline. Working with teachers and their students is a wonderful and fulfilling experience.

John S. Pearse, Professor Emeritus
UC Santa Cruz

The last time I saw John was in the summer of 2019, during his annual Critter Count. He started these Critter Counts back in the 1970s, monitoring biota at two intertidal sites in Santa Cruz. These sites have since been incorporated into the LiMPETS program. I'm sure it made John smile whenever he thought of generation after generation of schoolkids traipsing down to the intertidal with their quadrats and transect lines, counting organisms the way he had for so many years.

When I started teaching my Ecology class, John suggested that I take the students out to Davenport Landing to monitor at the LiMPETS site there. That is another of his long-term sites, and he was worried about losing information if it were not sampled at least once a year. My students have done LiMPETS monitoring three years now, and John accompanied us on at least two of those visits. I tried to impress upon the students that having John Pearse himself come out with us was a Big Deal, but am not sure I was able to convince them of how fortunate they were. I bet there are a lot of marine biologists in California who would dearly love to go tidepooling with John. And now no one else will.

John Pearse and Todd Newberry, the other professor who gets the blame for how I think about biology, taught an Intertidal Biology class. I came along on many of the field trips the last year they taught it. I remember getting up before dawn to drive down to Carmel, park in the posh neighborhood streets, and walk down to meet John and Todd in the intertidal. I remember slogging through the sticky mud at Elkhorn Slough, digging for Urechis and hearing John shout "It's a goddamned brachiopod!" from across the flat. I remember bringing phoronid worms back to the lab, looking at them under the scope, and watching blood flow into and out of their tentacles. I remember John taking an undergraduate, Jen, and me out to Franklin Point, and showing me my very first staurozoans. That was probably around 1996, and I'm still in love with those animals.

I'm no John Pearse or Todd Newberry, but I'm a small part of their giant legacy in this part of the world. I strive to instill in my students the joy and intellectual pleasure in studying the natural world that I inherited from John and Todd. Partly to honor them, but mostly because it suits my own inclinations, I'm on a one-woman crusade to bring natural history back into modern science and science education.

I've spent the last two mornings in the intertidal at two of the LiMPETS sites, as part of a personal tribute to John. I thought there would be no greater way to memorialize John than by spending some quality time in the intertidal, where he trained so many young minds. I was thinking of him as I took photos, and thought he would be pleased if I shared them.

Natural Bridges—4 August 2020

Shore crab (Pachygrapsus crassipes)
2020-08-04
© Allison J. Gong

And because, like me, John had a special affinity for the anemones:

Sunburst anemone (Anthopleura sola)
2020-08-04
© Allison J. Gong
Sunburst anemone (Anthopleura sola)
2020-08-04
© Allison J. Gong

And he would have loved this. What is going on here? How did this pattern come to be?

Anemones (Anthopleura elegantissima and possibly A. sola)
2020-08-04
© Allison J. Gong

And look at this, three species of Anthopleura in one tidepool! Can you identify them?

Tidepool at Natural Bridges
2020-08-04
© Allison J. Gong

Davenport Landing—5 August 2020

It was windy and drizzly this morning. I ran into a friend, Rani, and her family out on the flats; they were leaving as I arrived. I hadn't seen her since before the COVID-19 lockdown began back in March. She was also visiting the tidepools to honor John Pearse. We chatted from a distance and exchanged virtual hugs before heading our separate ways.

It felt like a John Pearse kind of morning. I recorded the video clip I needed for class, collected some algae and mussels for a video shoot tomorrow, and took a few photos.

A typical intertidal assemblage (sea stars, sea anemones, and algae) at Daveport Landing
2020-08-05
© Allison J. Gong

And even though I'm not very good at finding nudibranchs, even I couldn't miss this one. It was almost 4 cm long!

Nudibranch (Triopha maculata) at Davenport Landing
2020-08-05
© Allison J. Gong

The ultimate prize for any tidepool explorer is always an octopus. When I take newbies into the field that's what they always want to see. I have to explain that while octopuses are undoubtedly there and common, they are very difficult to find. You can't be looking for them, unless you really like being frustrated.

But John must have been with me in spirit this morning, because I found this:

Red octopus (Octopus rubescens) at Davenport Landing
2020-08-05
© Allison J. Gong

It was just a small one, with the mantle about as long as my thumb. I found it because I spotted something strange poking out from a piece of algae. It was the arm curled with the suckers facing outward. I touched it, and the arm retracted. It didn't seem to like how I tasted.

And lastly, for me this is the epitome of John Pearse's legacy: Working in the intertidal, showing students how to identify owl limpets. I hope they never forget what it was like to learn from the man who with his wife, literally wrote the book about invertebrates and founded LiMPETS.

John Pearse in the intertidal with my students
2016-04-29
© Allison J. Gong

RIP, John S. Pearse. You left behind some enormous shoes to fill and a legacy that will stretch down through generations. I count myself lucky to have spent time with you in the field and in the lab. While I will miss you sorely, it is my privilege to pass on your lessons. Thank you for all you have taught me.

%d bloggers like this: