Skip to content


Well, it looks like the end is indeed nigh. That last Pisaster, for whom I held out unreasonable hope for so long, seems to be on its way out. Today it has lost its last two arms, leaving a central disc attached to a single arm:

Remains of Pisaster ochraceus that has lost four arms. ©2013 Allison J. Gong
Remains of Pisaster ochraceus that has lost four arms.
© 2013 Allison J. Gong

As bad as it looks, it could be a lot worse. The other stars that disintegrated to this degree were essentially amorphous piles of goo, and this one is still somewhat intact. It also hasn't gone entirely mushy, so it is somehow maintaining its internal pressure. I'm going to keep it for another day and see how it looks tomorrow.

The other two arms, on the other hand (ha!), were a mess. When I got to the table this afternoon they were both semi-attached and semi-upside down behind one of the quarantine tanks. And they were very mushy; when I picked them up they just collapsed the way sea cucumbers do before they start firming up. Gross.

Autotomized arms of Pisaster ochraceus ©2013 Allison J. Gong
Autotomized arms of Pisaster ochraceus
© 2013 Allison J. Gong

This has to be the end, if only because I don't have any more Pisaster stars to die. Unless the Patiria and Dermasterias stars that I quarantined start getting sick, the outbreak in my seawater table is over, simply because there are no more victims to be infected. From a pathogen's perspective a 100% mortality rate is a bad thing--if all hosts of a population are killed then the pathogen will die with them. However, my table is connected by water supply to other tables and labs, and I have a sneaking suspicion that the pathogen is out there in Monterey Bay (the source of our seawater), in which case there's nothing I can do about it. Actually, I can do something. I can cross my fingers and hope for the best.



Against all odds, my last Pisaster star is (literally) hanging in there. It hasn't lost any more arms in the past 24 hours, and by the standards of the past two weeks that's a rousing success.

Pisaster star that lost two arms yesterday but no more since. ©2013 Allison J. Gong
Pisaster ochraceus star that lost two arms yesterday but no more since.
© 2013 Allison J. Gong

And it hasn't lost the turgor pressure of its body, so it isn't as limp as the others were before they died. I didn't want to mess with the animal too much, but it was pretty strongly attached to the table, indicating that the water vascular system hasn't lost all of its integrity. If that inter-radial area towards the top of the photograph is one of the areas where an arm was autotomized, the wound has healed surprisingly well. I will have to see what happens tomorrow.

On the other hand, the disease has spread to the lab next door, where a Pisaster giganteus started melting away two days ago. It was discovered with a small P. ochraceus feeding on the sick star, and the two stars have been since isolated. Today the P. giganteus looked horrifying:

Pisaster giganteus star melting from wasting disease. ©2013 Allison J. Gong
Pisaster giganteus star melting from wasting disease.
© 2013 Allison J. Gong

This is a really sick animal. There's a large wound on the bottom edge where an arm had been autotomized; it looks like the wound hasn't started healing at all. One of the remaining arms has twisted so that it is upside-down with the ambulacral groove--where the tube feet are visible--is facing upwards; that arm is probably going to be cast off soon. The beige-ish fluffy bits in the top of the photo are pieces of gut and water vascular system that are protruding through wounds in the body wall. I would be very surprised if this poor animal is still alive tomorrow. So far, the one that was feeding on this creature doesn't look diseased, so perhaps it will escape the pestilence.


The last of my Pisaster ochraceus stars waited until today, three whole days after all of its conspecifics had died, to start ripping itself into pieces. This is the sight that greeted me when I checked on my animals this morning:

My last Pisaster and its autotomized arm ©2013 Allison J. Gong
My last Pisaster and its autotomized arm
© 2013 Allison J. Gong

I spent some time examining the severed arm because it is freakishly fascinating to watch autotomized parts continue on as though they were still attached to the main body. They literally don't know that they're dead.  I've seen almost completely eviscerated sea urchins lumber around a seawater table on about 10 tube feet for days before finally giving up the ghost. This arm remained very active for quite a while--at least an hour--before I gave up and threw it away.

While I had this severed arm in a bowl under the dissecting scope I thought I'd take a few photos of the surface. Beautifully complex animals, sea stars are, when you look at them up close.

View through dissecting microscope of aboral surface of arm of Pisaster ochraceus. ©2013 Allison J. Gong
View through dissecting microscope of aboral surface of arm of Pisaster ochraceus.
© 2013 Allison J. Gong
Oral surface of arm of Pisaster ochraceus, showing tube feet. ©2013 Allison J. Gong
Oral surface of arm of Pisaster ochraceus, showing tube feet.
© 2013 Allison J. Gong

Meanwhile, the remaining 4/5 of the star continued to walk around the table. It ended up behind one of the quarantine tanks in which I had sequestered the bat stars, where over the course of the next couple of hours it dropped another arm. Because of its location I wasn't able to get a decent photo of it, but here is a shot of the wound from the first autotomization:

Wound caused by autotomy of an arm in Pisaster ochraceus. ©2013 Allison J. Gong
Wound caused by autotomy of an arm in Pisaster ochraceus.
©2013 Allison J. Gong

And I'm not the only one at the lab dealing with this disease outbreak. The lab next door is losing a couple of stars, and the Seymour Center lost one of their Pycnopodia helianthoides (sunflower star) yesterday. And, I heard second-hand that a student in the Santa Cruz area saw some dying stars on a dive in the past few days. What happened in my seawater table over the past few weeks may be just the beginning of something really, really bad.


As of today, I am cautiously optimistic that the Pisaster wasting disease I've been dealing with for the past couple of weeks has run its course. There has been quite a cost, however, as a mortality rate of 90% leaves me with one lonely star remaining.

The sole survivor of an outbreak of Pisaster wasting disease. Photo credit:  Allison J. Gong 2013
The sole survivor of an outbreak of Pisaster wasting disease.
© 2013 Allison J. Gong

This lone survivor reminds me of Brother John Clyn, a Franciscan monk and chronicler in Ireland who recorded the deaths of his fellow brothers during the Black Death in the 14th century and may have been the only inhabitant of his monastery not to die of the plague. It remains to be seen whether or not my star eventually succumbs and starts wasting away. But given how quickly all the other Pisasters were affected and killed, I think it's a good sign that this individual isn't sick already.

In the meantime, the quarantined Patiria miniata (bat stars) and Dermasterias imbricata (leather star) remain apparently unaffected. Keep your fingers crossed!


And I don't mean plague as in "too many stars to know what to do with," but as in "disastrous sickness that you don't want to catch." Some of the stars in my seawater table have been succumbing to some awful disease lately. A week ago today I noticed that many stars had been busy cannibalizing one of their compadres. Sometimes this just happens, and it doesn't necessarily indicate that things are about to go south. But when I looked more closely I noticed that the victim, instead of just being eaten, had autotomized its arms. Autotomy occurs in most sea stars and other invertebrates, and in fact is used as a method of clonal replication in some stars and many cnidarians. The species of star that is being affected by this plague (Pisaster ochraceus, the common ochre star) isn't one that readily autotomizes except in response to some external stress, such as a predator pulling on an arm.

So something was going on in this table. On Monday (Labor Day) I popped in for a quick check and although nobody had lost any arms I couldn't be absolutely sure that everything was okay. Some of the Pisasters were a little squishy and had arms that were a little twisted. On Tuesday morning there was no autotomy but in the afternoon a star had lost an arm, greatly disturbing the student lab assistant who discovered it. On Wednesday the table looked like an asteroid battlefield:

Large Patiria miniata (bat star) scavenging on dead Pisaster ochraceus (ochre star)
Large Patiria miniata (bat star) scavenging on dead Pisaster ochraceus (ochre star).
© 2013 Allison J. Gong

Many of the other Pisasters were also showing signs of sickness: curly arms (visible in the yellow star in the lower right corner of the photo above. Another ominous sign is that some of the apparently sickly stars were kind of squishy, indicating that the water vascular systems were somehow compromised.

Severed arms littered the table. The autotomized arms retain mobility for quite a while after being cast off--they literally don't know that they're dead.

Autotomized arm of a sick sea star
Autotomized arm of a sick Pisaster ochraceus. The other, intact, star is Orthasterias koehleri, the rainbow star. © 2013 Allison J. Gong

After removing the corpses and cleaning the table as best I could I was able to take a closer look at the survivors. I noticed that most of the remaining Pisaster stars had twisty or crossed arms, and some showed pretty severe stretching in the interambulacral area ("armpit" between adjacent rays), which I think is the first stage of autotomy.

Pisaster ochraceus stretched interambulacral area, pulling its own arm off.
© 2013 Allison J. Gong

The disease progresses very rapidly, and within an hour a star in this condition had pulled off one arm and was working on another.

Pisaster ochraceus that has autotomized an arm. Injury site is visible as a white area in lower edge of central disc. The autotomized arm is located at the top of the photo.
© 2013 Allison J. Gong

Unfortunately, this disease also affects other species. My Orthasterias koehleri (rainbow star) decided to join the fun. When I arrived Wednesday morning it was intact. It dropped an arm. I went away for about 40 minutes to take care of tasks in a different building, and when I returned it had lost two more arms:

Orthasterias koehleri that dropped three arms in about an hour. The autotomized arms are indicated by yellow arrows. The remaining 2/5 of the star are attached to the outside of my urchin tank.
© 2013 Allison J. Gong

Alas, my one and only Orthasterias succumbed later in the day and was dead on Thursday. Interestingly, the disease does not seem to affect either Patiria miniata (bat stars) or Dermasterias imbricata (leather stars). In fact, the Patiria have been eating pretty well over the past week, scavenging on the carcasses of the plague victims. I don't know if eating the diseased tissue will cause problems later on.

On Friday I lost two more Pisasters and isolated the Patiria and Dermasterias into tanks. A colleague of mine calls this the Molokai treatment, and I probably should have done it sooner, but I figured that at this point all the stars in the table were exposed to whatever pathogen is causing this disease so at that point why bother? However, I will need to sequester the healthy stars in order to disinfect the table once the disease has run its course, so into tanks they went.

After checking on the stars Saturday morning I am cautiously optimistic that the plague may have run its course. One more Pisaster, that was looking sickly the day before, had died, but my last two appeared healthy. Their arms were not curly, I didn't see any interambulacral stretching, and they felt nice and hard when I poked at them. All of these are good signs, but I will continue to keep close watch on them. If they make it to Monday we just might be out of the woods.

As of today, one week after I noticed the first severe symptoms, I have lost 80% of my Pisaster collection. To put that in to context, this mortality rate is every bit as bad as some villages that were virtually wiped out by the medieval Black Death.

It has been almost a month since my big female whelk started laying her eggs, and the embryos seem to be developing nicely. The first time I witnessed this phenomenon I saw the egg capsules begin to turn black, and worried that the eggs inside were dead and decomposing. But the cool thing about Kelletia development is that the larvae themselves become darkly pigmented as they develop, which we see as an overall dingy grayness of the egg capsules:

Kellettia eggs


Nosy as ever, I pulled one of the egg capsules off the side of the bin and took it back to my desk for closer examination under my dissecting scope. At the "top" of the capsule (the end that is attached to the bin), the material was quite thin, and I could some vague dark lumps inside. They were slowly moving around, so I knew they were alive.

Individual larvae resemble bubbles with dark stuff inside.
Individual larvae resemble bubbles with dark stuff inside.


Viability! This makes me happy and encourages me to "liberate" a few larvae to look at under higher magnification. I squeezed out a few veligers and put them under a coverslip with just enough water to keep their shells from cracking but not enough to let them swim away. Here's a tip for observing small aquatic critters under a microscope:  If you make their universe (i.e., the drop of water you are observing) small, they will be less able to swim away from you. Flattening the drop of water with a judiciously placed coverslip will also help immobilize the creature, as well as taking best advantage of the microscope's optics.

Early veliger of Kelletia kellettiiNot too much to look at while stationary, is it? You can see a coiled shell (this is a snail after all) and some blobby structures inside it. At this stage the larva isn't feeding and relies on yolk reserves provided by the mother when she deposited the eggs. Some of the opaque stuff inside the shell is yolk and other bits are various parts of the digestive system. At about 11:00 just underneath the shell there is an elongated transparent area: the larva's heart; you can see it beating in the video below. The light mohawk-looking structure facing to the right is the larva's velum, a lobed ciliated structure that the animal will use to swim after it hatches. The last structure of note is the wedge-shaped thing that points to about 5:00; this is the larva's foot, on the back of which sits the operculum that is used to close up the shell.

After a bit of trial and error I was able to catch some decent video footage through the microscope of a trapped larva:

Kellettia larva under compound scope

The larva rhythmically extends and retracts its velum. Because of the coverslip the larva can't go anywhere, but if unencumbered it would be able to use that velum to zip around really fast. It is very difficult to keep up with swimming veligers under a microscope!

My guess is that the larvae will begin hatching on their own in the next couple of weeks. They will be washed out of their tub and down the drain of the seawater table, to take their chances in the big ol' Pacific Ocean.


This week my female Kellet's whelk (Kelletia kelletii) started laying eggs. She's been doing this every summer for the past several years. She lives with one other whelk, presumably the father of her brood, as the eggs are both fertilized and viable even though I've never seen the snails copulating.

That's right, copulating. Whelks are predatory marine snails, some of which get quite large. My big female's shell is a heavily calcified 12 cm or so; she's a beefy mother! Her mate is smaller, but other than the size difference I wouldn't be able to tell them apart. Anyway, whelks copulate, with the male using a penis to transfer sperm into the female's body. Not very different from the way we humans do things, actually.

So at some point in the recent past my whelks copulated, and this week the female began depositing egg cases on the walls of their shared tub. I first noticed them on Monday, but she may have started over the weekend.

Female whelk (right) laying eggs. ©Allison J. Gong
Female whelk (right) laying eggs.
© 2013 Allison J. Gong

Those pumpkin seed-shaped objects are the egg capsules. Each is actually about the size and shape of a pumpkin seed and has a tough outer covering that contains 20-50 developing embryos. After the entire clutch is lain, which usually takes this particular female a week or so, the mom will leave the eggs to develop on their own.

I'll keep an eye on these eggs for the next week or so, and might be able to get some photos of the embryos and larvae as they begin developing. Keep your fingers crossed!

We are fortunate to have a lot of wildlife in our backyard, which is actually a canyon. On any given day we can look out and see finches and hummingbirds squabbling over their respective feeders, jays trying to steal whatever they can, and hawks either swooping through the brush or soaring overhead. The soundtrack of afternoons around here is punctuated by the sharp high-pitched "teek" of towhees and the chickadees can be heard just about any time of day. And every once in a while a mockingbird tricks me into thinking that I'm hearing something that I'm not.

Among our favorite birds is our state bird, Callipepla californica, or the California quail.

California quail male (left) and female (right)
California quail male (left) and female (right). Source: Wikimedia Commons

In our canyon we have quail year-round, and we call them collectively the "dudes." The males, with their typically gaudy male plumage, are the dudes and the females are dudettes. In the winter, the quail form a covey of anywhere from 15-25 adults of both sexes, banding together for safety.

Males (dudes) in a winter covey
Males (dudes) in a winter covey

Once the days begin to lengthen in the spring, however, the males begin squabbling for territory and females, and the covey breaks up. After that we see the quail in male-female pairs. Interestingly, the pairs will forage in more or less the same area, but when one of the males crosses some invisible (to me) line the other will get all bent out of shape. Females seem to forage wherever they want.

Nesting occurs in the bushes somewhere, and in July we see the babies for the first time. Usually it's the dads who bring out the dudelets; I think the females may be incubating a second clutch of eggs at this time.

Needless to say, the dudelets are very cute. The youngest we've ever seen were little speckled fluffballs. It's hard to see in this photo, but at this age the dudelets already have tiny plumes.

Dudes and dudelets
Dudes and dudelets

Like most baby birds, the dudelets grow fast. After a couple of weeks they've grown more feathers and begin to look more like their parents. This year (2013) we missed the fluffball stage and today we saw the dudelets for the first time. They were brought up by both parents; we saw two males, one female, and 4-5 dudelets. It's hard to get an exact count because these birds are so good at melting into the shrubs and becoming invisible. Even though there was a dudette present, it was the dudes that were watching over the dudelets.

Watchful dude and two dudelets
Watchful dude and two dudelets

Eventually the dudelets will grow up and the males will have to disperse to find and defend their own territories. The winter covey will re-form, and next spring we will be on the lookout again for the next generation.


Over the Memorial Day weekend I took my students out on the early morning low tides at Natural Bridges State Beach.  While they were ooh-ing and ahh-ing and filling out their assignment worksheet, I was playing around with my new camera, taking pictures in the water.  Because I am not a photographer and sea anemones just sit there, they quickly became my favorite subjects.  Not to mention the fact that they are simply  beautiful and photogenic creatures.

At Natural Bridges we have four species of anemones in the genus Anthopleura:

  • A. xanthogrammica - giant green anemone
  • A. sola - sunburst anemone
  • A. elegantissima - aggregating anemone
  • A. artemisia - moonglow anemone

Of these species, the first two are notable for their large size.  At Natural Bridges they can get to be the size of a dinner plate.  They live side-by-side in tidepools, and since there are many deep-ish pools at Natural Bridges they are among the most conspicuous animals in the intertidal along the northern California coast.

Anthopleura sola (left) and A. xanthogrammica (right) in a shallow pool at Franklin Point.
Anthopleura sola (left) and A. xanthogrammica (right) in a shallow pool at Franklin Point.

It's easy to identify these animals when they're sitting right next to each other.  The difficulty comes when you see only one in a pool by itself with nothing to compare it to.  In a nutshell, here are some things you can use as clues to determine which species you have in front of you.

Let's start with Anthopleura xanthogrammica, the giant green anemone.  This animal's oral surface and tentacles are a solid color, varying from bright green to golden brown.  There are no conspicuous stripes on the central disc and the tentacles are relatively short and stubby, without any white patches.

Anthopleura xanthogrammica, photographed at Natural Bridges State Beach
Anthopleura xanthogrammica, photographed at Natural Bridges State Beach

Anthopleura sola, on the other hand, usually has distinctive radiating lines on the oral disc.  Hence the common name of Sunburst Anemone.  Its tentacles are generally longer and more slender than those of A. xanthogrammica, and often have sharp-edged white patches.  Sometimes the tips of the tentacles are tinged a pale purple.  Anthopleura sola are usually brownish-green in color, and I haven't seen any that are as bright green as the A. xanthogrammica anemones.

Anthopleura sola, photographed at Natural Bridges State Beach
Anthopleura sola, photographed at Natural Bridges State Beach

That's all well and good, but sometimes you come across an individual that doesn't completely follow the rules.  Or rather, it looks like it could belong to both species. Such as this fellow (fella?):

Hmmm...sola or xanthogrammica?
Hmmm. . . sola or xanthogrammica?

The animals obviously don't read the descriptions.  This one has xanthogrammica shape and overall color, but those lines on the disc read as sola-ish.  I would call this one a xanthogrammica.  What do you think?

The birds do it, the bees do it, and now the frogs are doing it.  There's a small clump of trees between two of the houses across the street, and I think that's where a male Pacific chorus frog has staked his claim.  Every evening for the past few weeks I've heard him singing away.  Often you'll hear several frogs singing at the same time, but this particular guy's call is much louder and more piercing than the others.  What I particularly like about this sound recording is that it begins with a solo, and other frogs join in to make a joyful noise.

The Pacific chorus frog (Pseudacris regilla), sometimes erroneously referred to as the Pacific tree frog, is the only frog that ribbits.  It couldn't possibly be mistaken for anything else.  In fact, its song is so iconic of "frogness" that it is universally used in movies and other Hollywood products taking place anywhere in the world, despite the fact that this little singer lives only along the western coast of the US.

Most Pacific chorus frogs don't live in trees
Most Pacific chorus frogs don't live in trees

Why is it wrong to call these guys tree frogs?  Because they don't live in trees, silly!  At least, not exclusively in trees.  Along the central California coast they live in grassy areas from the coast up into the hills.  I start hearing them in winter, as the rains form puddles and small ponds, but they stop singing when they hear people approaching.  To me, they are part of the soundtrack of spring in California.  While most of the singing happens at night, I often hear them singing during the day at the marine lab.  Many times the males are singing together -- hence the name chorus frogs.

Considering their ability to make a lot of noise, Pacific chorus frogs are little guys.  Big ones are only 5 cm long.  They vary in color from brown to green, and the color of an individual can change throughout the year.  They have a very distinctive dark horizontal stripe that runs through the eye, making them look like, well, chorus frogs.

Pacific chorus frog (Pseudacris regilla) on the stem of a sunflower
Pacific chorus frog (Pseudacris regilla) on the stem of a sunflower

Like all frogs, chorus frogs are tied to water for reproduction.  Once the rains have started, male frogs migrate to wet areas and set up shop.  Their "krick-et" calls attract females, and the frogs pair up and do what comes naturally to most animals in the springtime.  The female lays eggs in calm, still water and the male fertilizes them as they are deposited.  Tadpoles develop in the water and, hopefully, metamorphose into froglets in due time.

Eventually the mating season will end, and the frogs will stop singing until next year's rains.  I will miss them when they go away, but for the next little while the soundtrack of spring will play every evening.


%d bloggers like this: