Skip to content

2

Yesterday I collected three very small Pycnopodia helianthoides stars. When I brought them back to the marine lab I decided to photograph them because with stars this small I could easily distinguish between the original five arms and the new ones:

OLYMPUS DIGITAL CAMERA OLYMPUS DIGITAL CAMERA Pycnopodia juvenile

These guys began their post-larval life with the typical five arms you'd expect from an asteroid. At this stage they are pretty conspicuous because they are the largest arms. The other arms arise in the inter-radial regions between arms. For years now I've been wanting to watch juvenile Pycnopodia stars growing their extra arms, and it looks like I finally have my chance. I noted that these stars are all about the same size, but don't have the same number of arms. It would be interesting to see if the rate of arm appearance and growth is related to how much food the stars have. Hmmm, that sounds like a study I should do.

And then one of the stars started running. And I mean running. Watch:

You might wonder how in the heck they can run so fast, and it's a valid question. We can actually examine the animal's scientific name to get an answer. "Pycnopodia" means "dense foot" and "helianthoides" means "sunflower-like." So these guys have a lot of tube feet, and they use them to run and feed. Imagine how fast we could run if we had more than two feet and could co-ordinate them this well:

So, when these guys (gals?) grow up, they'll be at least half a meter in diameter with 20-24 arms. With all those tube feet, they'll be Speedy Gonzales! In fact, they will be the terror of the intertidal--big, fast, and voracious. Anything that can't get out of their way will be eaten.

We air-breathing land mammals should be grateful that echinoderms never managed to get out of the sea. Can you imagine this monster chasing you down a dark alley, or climbing through your bedroom window?

On 11 March 2011 a magnitude 9.0 earthquake occurred off the coast of Japan. About 14 hours later, at 11:15 a.m. local time a tsunami came through the Santa Cruz Small Craft Harbor. It sank dozens of boats and significantly damaged several of the docks. People were ordered to evacuate the area before the expected arrival of the tsunami, but of course there were those who chose to stay behind and shoot videos like this one (the real action starts at about 1:00):

 

As a result of the damage to the infrastructure of the marina itself, many of the docks have been replaced since 2011, including those that are closest to the mouth of the harbor. For several years now I have been taking marine biology students to the docks to examine the organisms growing on the undersides of the docks, and this year the biological community is finally getting interesting again. These particular organisms are described as "fouling" because they are the ones that colonize the bottoms of boats and have to be scraped off periodically. They are characterized by fast growth rates and short generation times; many of them are also colonial. The first arrivals settle onto the surface of the docks, and later arrivals can take up residence either on the docks or on their predecessors. A healthy fouling community has a rich diversity of marine invertebrates, algae, and the occasional fish. This semester's trip to the harbor occurred a few weeks ago, and as usual the students were amazed at the amount and diversity of life on the docks. I remembered to bring the waterproof camera and snapped some shots.

This is what you see when you lie on the dock and hang your head over the edge:

OLYMPUS DIGITAL CAMERA

It's a mosaic of color and texture, really quite beautiful. You can see that mussels are the largest organisms in this community, and in turn are substrate for a variety of other animals.

Peering a bit closer to take notice of individual animals, you start to see things like this:

A perennial favorite because of its beautiful coloring. It eats my hydroids, though, so I don't like it.
Hermissenda opalescens, a perennial favorite because of its beautiful coloring. It eats my hydroids, though, so I don't like it.

 

One of the colonial hydroids, Plumularia sp. that grow at the harbor.
One of the colonial hydroids, Plumularia sp. that grow at the harbor. This species always grows in this pinnate form. Absolutely gorgeous under the microscope.
These small white anemones (Metridium senile) are about 3 cm tall.
These small white anemones (Metridium senile) are about 3 cm tall.
Feather duster worm, Eudistylia vancouveri, easily one of the most conspicuous animals on the docks.
Feather duster worm, Eudistylia vancouveri, easily one of the most conspicuous animals on the docks.
Colonial sea squirts, Botryllus sp. and Botrylloides sp.
Colonial sea squirts, Botryllus sp. and Botrylloides sp.

Colonial sea squirts, those orange-ish blobs in the last picture, are extremely common in marinas. In this photo, each distinct colored blob is an individual colony, and each colony consists of several genetically identical zooids connected by a protective covering called a tunic. Each teardrop-shaped zooid has its own incurrent siphon (the visible hole) through which it sucks in water, and the zooids in a group within a colony share a single excurrent siphon through which waste water is discharged. In Botryllus, the zooids are arranged into flower-like configurations called systems. In Botrylloides the systems are much less distinctive and wind around over the substrate. I've outlined a nice colony of Botryllus in the photo below, so you can see the easily recognized systems.

A colony of Botryllus, with zooids arranged in flower-shaped systems.
A colony of Botryllus, with zooids arranged in flower-shaped systems.

Such a wonderful world of animals and algae, right under our feet. Even people who spend a lot of time around boats don't pay attention to the stuff on the docks. To me it is a secret garden that is easily overlooked but greatly appreciated when you take a moment to get your face down where your feet are.

Our Purple beehive, which swarmed on Wednesday (today is Friday), threw another swarm this afternoon.

It remains to be seen if we can recapture them. So far we haven't been able to see exactly where they've settled. Fingers crossed.

For the past week we've had rain, sometimes brief downpours and at other times more gentle rain, and the rainy days would be interspersed with sunshine. We were warned by one of our beekeeping mentors that this was "swarmy" weather:  The bees are locked up inside the hive when it rains, and swarm on the days that are going to be sunny. "Watch your hives for swarms!" we were told.

We did take care to minimize swarms from our Apiary #1. We split the hive and gave the original hive frames of blank foundation to work on, hoping that this extra space would counteract any tendency to swarm. It seemed to work on the original hive, but yesterday the split swarmed. Surprise!

Here's what a swarm looks like when the bees are getting ready to depart. They gather on the front of the hive until a certain critical mass is achieved, then they take off to a temporary landing site nearby.

These girls went down the canyon and decided to alight on the poison oak. All that green stuff you see in the video is poison oak, so nice and shiny. Alex was brave and bushwhacked a path through the poison oak, then he captured the swarm and brought it back up the hill. By the end of the afternoon the bees were safely (and, we hope, contentedly) ensconced in their new home, our Blue hive.

The swarm now lives in our Blue hive. We hope they stay here.
The swarm now lives in our Blue hive.

We hope they decide to stay here.

1

The astronomical onset of spring is the vernal equinox, which this year occurred on Thursday 20 March 2014. The date is determined by the movements of the Earth and the sun, and occurs regardless of weather conditions anywhere on the planet. Some people look to plants for an indication of spring: the first day that a crocus pops up through the snow, or the first blossoms on a cherry tree. For me, I know that spring has sprung when certain birds show up in my world.

The first red-winged blackbirds make themselves heard in January, which is too early to be thinking about spring but at that point in the year it's nice to be reminded that the days are getting longer. The red-wingeds' calls are heard throughout February and March; it always makes me smile to hear them lekking. Some time in March I see the first barn swallows at the marine lab, and once they start plastering mud under the eaves I know that spring is here.

A few years ago the swallows chose a site sort of under a stairway to build their nest. They started plastering mud in a corner of the wall and constructed a neat little home in which to raise their young. That year they raised four babies successfully.

At this point they're the same size as their parents.
At this point they're the same size as their parents.

The parents were still feeding them, but the babies almost didn't fit into the nest anymore. It was so cute. I'd walk under them to get to the door and they'd all pivot their heads down to look at me.

The parents were pretty blase about people walking under their nest all day:

The parentsIt was up to us to make sure we didn't get pooped on. Sometimes you'd have to dodge the splat.

Once the babies fledge and start feeding themselves, we get barn swallows swooping around the courtyard. They seem to be more active in the afternoons, when the wind picks up. They look like they're having so much fun, zooming around like miniature 737s.

I bet it's fun to be a swallow in the springtime.

 

This past Tuesday and Wednesday afternoon I took my marine biology students to the rocky intertidal at Natural Bridges State Beach. We completely lucked out with the weather; the storm system that brought some of the rain that we desperately need had cleared out, leaving calm, clear seas and little wind. Perfect weather for taking students out in the field, in fact.

First of all, we didn't see any stars. Not that I was looking for them, particularly, but I was keeping an eye out for them and at this time last year I would have seen many Pisaster ochraceus hanging out in the pools and on the rocks. Here are a couple of pictures I took at Natural Bridges in years past:

OLYMPUS DIGITAL CAMERA

OLYMPUS DIGITAL CAMERA

The stars, when present, are prominent residents of the mid-intertidal zone, where they feed on mussels. But now, alas, there don't seem to be any. They WILL come back, and it will be interesting to monitor their population recovery.

I enjoy taking students in the field because many of them have never been there before, and it's always fun looking at a familiar scene with fresh eyes. When everything is new, it is very easy to be excited and enthusiastic, which these students are.

We saw, among other things:

OLYMPUS DIGITAL CAMERA
Fish! The fish on the right was about 15 cm long. I think it's a woolly sculpin (Clinocottus analis), but IDing sculpins in the field is pretty tricky.
OLYMPUS DIGITAL CAMERA
This fish was much smaller, only about 10 cm long. It could be a fluffy sculpin (Oligocottus snyderi), or it could be a smaller woolly.
OLYMPUS DIGITAL CAMERA
This is an encrusting sponge, Haliclona sp. I've seen it in shades of rosy pink, too. The large holes are oscula, the sponge's excurrent openings. And that's a big gooseneck barnacle (Pollicipes polymerus) hanging down from the top of the picture.
OLYMPUS DIGITAL CAMERA
An assortment of intertidal critters sharing space on a rock. How many chitons can you spot?  How many barnacles?  How many limpets?
OLYMPUS DIGITAL CAMERA
This is one of my favorite intertidal animals, the owl limpet (Lottia gigantea). These large limpets are farmers. They keep an area clear of settlers by grazing at high tide. You can see the marks left by this individual's radula. The limpets also manage their farms, letting the algal film grow on one section while feeding on another.
OLYMPUS DIGITAL CAMERA
I love macro shots like this! The green tufty stuff is Cladophora columbiana, a filamentous green alga. Isn't it a vibrant green color? To give you an idea of how fine the Cladophora filaments are, that snail in the background is about the size of a quarter.
OLYMPUS DIGITAL CAMERA
And last, a gratuitous anemone shot. Ahhh, Anthopleura xanthogrammica, what a photogenic creature!

Yesterday I heard (or, more precisely, was reminded) that the quinine molecule fluoresces. Fluorescence is what happens when a molecule absorbs electromagnetic radiation--either in the visible light range or elsewhere in the spectrum--and emits light at a different wavelength. Lots of molecules fluoresce. Chlorophyll, for example, is the green molecule that captures the light photons that power the process of photosynthesis. If you shine light at a wavelength of 425 nm (violet) at a tube of chlorophyll, it will fluoresce, or emit light at 680 nm (red).

Here's a DIY video guide to demonstrate the fluorescence of chlorophyll in the comfort of your own home:

Chlorophyll fluorescence

So back to the fizzy beverages. I sing in a choir that has a long tradition of gathering after rehearsals and drinking gin-and-tonics (G&Ts). Tonic water contains quinine, which imparts fizziness and a certain bitterness to the drink. Having re-learned about the fluorescence of quinine, I thought it would be fun to watch the tonic and gin mix under a UV light. We needed a dark place for this experiment, hence the bathroom, the most convenient room that we could completely darken.

Turns out it worked amazingly well. Tonic water is entirely clear under white light, which contains all wavelengths of the visible spectrum; it looks like any other unflavored fizzy water. But under the UV light it glows with a kind of unearthly blue hue:

The quinine in tonic water fluoresces under UV light
The quinine in tonic water fluoresces under UV light

But the real fun is in watching the tonic and gin mix in the glass. We make G&Ts this way: Put a few ice cubes in the glass, squeeze in a bit of lime, pour in two fingers' of gin, then top off with tonic water. So we did everything but pour in the tonic water, then ventured into the bathroom with the UV light, where I recorded this:

Now isn't that cool? Science is great!

4

"Perhaps" being the operative word here. I was up at Davenport Landing the other day to do some collecting, and saw some healthy stars. Alas, no pictures, as I'm not coordinated enough to do photography and collecting on the same trip. But here's what I saw:

  • 5 healthy Pisaster ochraceus stars. This was the first species to start melting in my seawater table back in September, and they've suffered a lot subtidally as well. These five were all at least as big as my outstretched hand, so were several years (decades?) old. They were nice and stiff, unlike the flabby ones that died, and firmly attached to the rocks, indicating that the water vascular system was functioning normally. Yippee!
  • 6 healthy Dermasterias imbricata stars. I haven't personally observed this species being affected by wasting syndrome, and the stars I saw the other day all looked good. This species as a whole does not have the sticking power of P. ochraceus, but the ones I picked up had the right texture and consistency to make me think they were in good shape.
  • 1 tiny Pycnopodia helianthoides, about the size of my thumbnail. It had 10 arms of various lengths and was very active. I really wished I had my camera when this little guy floated into view on a piece of algae.

So what does this all mean?

Probably not much, in and of itself. This is a single observation at one site on one day. But finding live,  healthy stars is a lot more encouraging than seeing only dead or dying stars. The fact that I saw a very small P. helianthoides makes me wonder. Usually at Davenport Landing I see a few hand-sized or larger Pycnopodia stars. . . I saw none the other day, so does that mean they've all died? And how old is this little 1-cm star? Did it recruit before or after the wasting event?

I also noticed something else, which may or may not be related to the recent star deaths: Turban snails (Chlorostoma funebralis and C. brunnea) seemed to be more abundant than usual. Also, the C. funebralis, which are typically roughly spherical and the diameter of about a quarter, were larger and had the more slightly conical shape of C. brunnea. Just a coincidence? Hard to say, without quantifiable data, but I'm guessing "Yes."

5

Since my earlier posts on Pisaster wasting disease in the lab, I've been contacted by a couple of divers who have seen afflicted stars on their dives in Monterey Bay. They have both graciously given me permission to post their photos, which clearly demonstrate that Pisaster and other stars are being stricken subtidally as well as intertidally and in the lab.

This set of photos is from Ralph Wolf, taken on 11 October 2013 off of Pacific Grove, California.

This star, a Pisaster giganteus, looks healthy.  It has no dermal lesions, the body is plump and full, and the arms are lying flat and fully attached to the rock.

An apparently healthy Pisaster giganteus
Pisaster giganteus
©2013 Ralph Wolf

This P. giganteus, on the other hand, is doing the twisty arm thing that I saw in the lab. It seems to be the precursor to the star ripping its arms off. There's an orange Patiria miniata lurking in the background, just waiting for a chance to begin feasting on a not-quite-dead-yet sick star.

Pisaster giganteus ©2013 Ralph Wolf
Pisaster giganteus
©2013 Ralph Wolf

Here are some more extreme examples of the twisty arm thing in P. giganteus that have already resulted in at least one arm being autotomized.

Pisaster giganteus
©2013 Ralph Wolf
Pisaster giganteus
©2013 Ralph Wolf

And it wasn't just a few isolated Pisaster stars that were showing early signs of the disease. Here are three of them on the same rock, all twisting their arms to some degree.

Pisaster giganteus ©2013 Ralph Wolf
Pisaster giganteus
©2013 Ralph Wolf

Pisaster stars were not the only ones that Ralph saw stricken with the disease.  The sunflower stars, Pycnopodia helianthoides, were in even worse shape. This star has contorted itself into an almost recognizable shape and lost at least a few arms, one of which is visible at the top of the photo.

Pycnopodia helianthoides ©2013 Ralph Wolf
Pycnopodia helianthoides
©2013 Ralph Wolf

And take a look at this poor star. All that remains is the central disc and a single arm. Given that Pycnopodia normally has 20-25 arms, this animal has suffered a huge loss:

OLYMPUS DIGITAL CAMERA
Pycnopodia helianthoides
©2013 Ralph Wolf

And, of course, there were Pycnopodia arms crawling around by themselves. They literally don't know they're dead.

Pycnopodia helianthoides arm ©2013 Ralph Wolf
Pycnopodia helianthoides arm
©2013 Ralph Wolf
Pycnopodia helianthoides arm ©2013 Ralph Wolf
Pycnopodia helianthoides arm
©2013 Ralph Wolf
Pycnopodia helianthoides arm ©2013 Ralph Wolf
Pycnopodia helianthoides arm
©2013 Ralph Wolf

Ralph was able to find and photograph some apparently healthy small Pycnopodia stars.

Pycnopodia helianthoides ©2013 Ralph Wolf
Patiria miniata (left) and Pycnopodia helianthoides (right)
©2013 Ralph Wolf
Pycnopodia helianthoides ©2013 Ralph Wolf
Apparently healthy Pycnopodia helianthoides
©2013 Ralph Wolf
Pycnopodia helianthoides ©2013 Ralph Wolf
Apparently healthy Pycnopodia helianthoides
©2013 Ralph Wolf

The rainbow star, Orthasterias koehleri, was also getting in on the action. These are beautiful stars in bright reds and oranges:

Orthasterias koehleri ©2013 Ralph Wolf
Orthasterias koehleri (top) and Patiria miniata (bottom). Pisaster giganteus in background in lower right corner.
©2013 Ralph Wolf

But Orthasterias is also twisting and autotomizing arms:

Orthasterias koehleri ©2013 Ralph Wolf
Orthasterias koehleri
©2013 Ralph Wolf
Orthasterias koehleri arm ©2013 Ralph Wolf
Orthasterias koehleri arm
©2013 Ralph Wolf

So, for now the disease continues to exact its toll. At least this time it appears that Patiria miniata (bat stars) and Dermasterias imbricata (leather stars) are not being sickened, although we have had outbreaks of a very similar disease in the lab that affected these species. And the fact that sick stars are being seen in the field, both intertidally and subtidally, means that the disease I documented in the lab is not strictly a captivity-related phenomenon. I think what we are witnessing is regional--the first report I read about was in British Columbia--rather than local. Only time will tell.

4

Today is Monday.

Last Friday morning I was at the marine lab doing my usual feeding and cleaning stuff, and everything was fine. I was back at the lab Friday afternoon to return some animals that we had borrowed for one of the classes I'm teaching, and as soon as I got out of the car I knew something was wrong. I could smell it. Plankton bloom.

When I opened the door to one of the wet labs, it felt like walking into a wall of stench. It is a peculiar smell of excessive fecundity, which we occasionally see at the lab this time of year, due to a rapid population increase, or "bloom," of one or a few phytoplankton species. I'm not sure if the smell is actually bad or if it just seems bad because of all the negative things I associate with it. Negative things such as:  Sludge accumulating and decomposing on any horizontal surface in a table, including the surfaces of animals; said animals being fouled and dying because their respiratory surfaces are gunked up; seeing water straight from the tap coming in brown.

But whenever we get a nasty bloom like this, I am always curious about which critter it actually is. Back in the summer of 2010 there was a phytoplankton bloom in Santa Cruz that was at least partially caused by a dinoflagellate in the genus Alexandrium, some of which are known to produce toxins that work their way up the food chain and cause paralytic shellfish poisoning in people.

I took a sample from some build-up from this current bloom and looked at cells under the microscope (fun!). I was able to identify a couple of dinoflagellates right off the bat.

This is Ceratium.  I saw a lot of cells that look like these:

Ceratium cells.
Ceratium cells.
© Kudela lab, UCSC

Various species of Ceratium are present in plankton tows most of the year and as far as I know are pretty innocuous.

I also saw lots of these cells, too. This is Prorocentrum, a dinoflagellate that is pretty easy to recognize because of the little spine at one end of the cell. I don't think these guys are toxic, either.

Prorocentrum cells. ©2013 Allison J. Gong
Prorocentrum cells.
© 2013 Allison J. Gong

Lastly, there were a lot of these cells. I wasn't able to get a very good look at them and don't know for sure who they are, but they may be a species of Cochlodinium polykrikoides. I saw single cells and chains of two cells. C. polykrikoides is not nearly as harmless as the other two algae I saw. It has been responsible for fish kills in Asia.

These cells in a short chain might be Cochlodinium polykrikoides. ©2013 Allison J. Gong
These cells in a short chain might be Cochlodinium polykrikoides.
© 2013 Allison J. Gong

On my way out of the marine lab yesterday I stopped by the overlook to see what the surf looked like. I could see that the water was discolored with a brownish tinge. Look at the water as it recedes from the rocky bench. It would normally be white, but here it is kind of a dirty gray-brown color.

The good news is that today, Monday, the bloom seems to have abated quite a bit. I cleaned all of my tables and tanks on Saturday (extremely gross) and Sunday (not nearly as gross) and this morning there wasn't very much sludge at all. And the smell was nothing like it had been on Friday afternoon. So maybe we're getting a reprieve and won't have to deal with weeks and weeks of this stuff. That would be nice. My poor animals need a break from environmental conditions that are trying to kill them.

%d bloggers like this: