Skip to content

An exception to the rule

Biology is a field of science with very few absolutes. For every rule that we teach, there seems to be at least one exception. I imagine this is very frustrating for students who want to know that Something = Something every single time. It certainly is easier to remember a few rules that apply to everything, than to keep track of all the cases when they don't.

Take, for example, the tube feet of sea stars. Among the generalities that we teach are: (1) sea star tube feet are used for locomotion and feeding; and (2) sea star tube feet are used to stick firmly to rocks and to pry open mussel shells. And we can show many examples of stars clinging to vertical and overhanging surfaces.

Purple sea star sticking to vertical rock surface in the intertidal
Ochre star (Pisaster ochraceus) at Franklin Point
© Allison J. Gong
Purple sea star sticking to granite boulder in the intertidal
Ochre star (Pisaster ochraceus) at Mitchell's Cove
© Allison J. Gong

Sometimes we can even find Pisaster doing both at the same time:

Ochre star (Pisaster ochraceus) wrapped around mussel(s) (Mytilus californianus) while clinging to an overhanging surface at Natural Bridges
© Allison J. Gong

A photo like the one above is merely a snapshot of an event that lasts for hours. What's going on in there? Chances are it's a life-or-lunch battle, with the star trying to pry open the mussel just enough to slide its stomach between the shells while the bivalve is holding its shells clamped shut for dear life.

Each of these behaviors-—sticking to rocks and prying open mussels—is possible because Pisaster ochraceus has suckered tube feet. The tube foot itself has a flattened surface that squishes out a tiny dab of sticky adhesive glue. Together, the tube feet can adhere quite strongly to hard surfaces. I know from experience that it is impossible to pry an ochre star off a rock after it has had a chance to hang on, unless you're willing to damage several dozen tube feet. The tube feet will grow back, but there's no point in causing harm to the animal.

Arm tip of a sea star in a tidepool, showing suckered tube feet sticking to a rock
Tube feet at the arm tip of Pisaster ochraceus
© Allison J. Gong

So that's the general story we teach in school. For most students, that's the entire story. However, it's always the exceptions, the deviations from the norm, that are the most interesting.

Not every sea star clings to rocks in the intertidal. There are several species that are equally at home on both rocks and sand. And among the rock-clingers, not all are as strong as Pisaster ochraceus. The ochre star's sucker-shaped tube feet are an example of the relationship between form and function: the tube feet's morphology provides the surface area for adhesion that allows the animal to feed and locomote over hard surfaces.

Spiny sand star (Astropecten armatus) at the Seymour Marine Discovery Center
© Allison J. Gong

As you might expect, sea stars that don't cling to rocks and pry open mussels may not have sucker-shaped tube feet. The spiny sand star, Astropecten armatus, has pointed tube feet! It's hard to see exactly what the tube feet look like in the photo, but here's a video:

See how the tube feet on the underside of that arm end in points rather than suckers? If we revisit the notion of form and function, what questions come to mind when you look at the morphology of the tube feet? And given Astropecten's common name and its habitat, can you think of how it can survive and get around without the sticking power of Pisaster's tube feet?

Observation of Astropecten in its natural habitat would show that it spends a lot of time buried in the sand. It somehow has to get below the surface of the sand, where it feeds on olive snails or other animals that live buried there. How can it do that? Would the generalized sea star sucker-shaped tube feet that we teach to students be useful for burrowing? We can also think about it in a more familiar context: If you had to dig a hole in the ground, would you reach for a plunger? Clearly you wouldn't. You'd use a shovel, or a spade.

Astropecten's pointed tube feet are perfect for punching down between sand grains, enabling the star to work its way down into the sand. The sand star has hundreds of tiny spades at its disposal to use for digging. Circular structures shaped like miniature horse hooves wouldn't be very good at this job, nor would pointed tube feet be very good at sticking to rocks. This animal doesn't obey the "rules" of sea star biology, but form and function, as always, go together.

What do you think?

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: