Skip to content

Unusual numbers of the usual suspects

Today was the first time I've gone out on a low tide since before the whole COVID19 shelter-in-place mandates began. Looking back at my records, which I hadn't done until today because it was much too depressing, I saw that my last time out was 22 February, when the low tides were in the afternoon. At the time I made what seemed to be the not-too-bad decision to stay away from the remaining afternoon lows and wait until the spring shift to morning lows, which I like much more. And then then COVID hit and we all had to stay home and beaches were closed. So yeah, it has been much too long and I really needed this morning's short visit to the intertidal.

Pair of black oystercatchers (Haematopous bachmani) at Mitchell's Cove
My companions for a short while this morning, a pair of black oystercatchers (Haematopus bachmani) at Mitchell's Cove
2020-05-08
© Allison J. Gong

Beaches in Santa Cruz County are closed between the hours of 11:00 and 17:00, except that we are allowed to cross the beach to get to the water. This means that surfers, kayakers, SUP-ers, and marine biologists can get out and do their thing. Of course, my particular thing took place hours before the beach restrictions began, so I was in the clear anyway. I didn't venture too far from home, as I wasn't quite certain how easy it would be to get down to the beach.

Spring is the prime recruitment season for life in the intertidal. The algae are coming back from their winter dormancy, and areas that had been scraped clean by sand scour or winter storms are being recolonized. Many of the invertebrates have or will soon be spawning. And larvae that have spent weeks or even months in the plankton are returning to the shore to metamorphose and begin life as an adult. Just as it is on land, spring is the time for life in the sea to go forth and multiply.

For several decades now, marine ecologists have been studying barnacles and barnacle recruitment. Barnacles are a nice system for studying, for example, recruitment patterns and mortality. The cyprid larva, the larval stage whose job it is to find a permanent home in the intertidal, readily settles and metamorphoses on a variety of man-made surfaces; this makes it easy to put out plates or tiles and monitor who lands there. The fact that barnacles, once metamorphosed, remain attached to the same place for their entire lives means an ecologist can measure mortality (or survivorship, which is the inverse) by counting the barnacles every so often.

These are young barnacles (Chthamalus sp.), about 4-5 mm in diameter. I don't know how old they are, but would guess that they recruited in the past couple of months. These individuals all found a nice place to set up, because as I've written before, barnacles need to be in close proximity to conspecifics in order to mate.

Young acorn barnacles (Chthamalus dalli/fissus) on a rock at Mitchell's Cove
Small barnacles (Chthamalus sp.) on a rock at Mitchell's Cove
2020-05-08
© Allison J. Gong

This is a mixed group of Chthamalus sp. and Balanus glandula. Balanus is taller and has straighter sides and a more volcano-like appearance. Larvae of both genera recruit to the same places on rocks in the intertidal, and it is not uncommon to see assemblages like this.

Mixed assemblage of Balanus and Chthamalus barnacles at Mitchell's Cove
Barnacles Balanus glandula and Chthamalus sp. at Mitchell's Cove
2020-05-08
© Allison J. Gong

Both species of barnacles are preyed upon by birds, sea stars, and snails. Predatory snails use their radula to drill a hole through the barnacle's plates and then suck out the body. Some of the barnacles in the photo below are dead--see the empty holes? Those are barnacles that were eaten by snails such as these.

Small barnacles and predatory snails at Mitchell's Cove
2020-05-08
© Allison J. Gong

What was unusual about this morning was the number of snails of the genus Acanthinucella. I don't know that I've ever seen this many of them before.

Large group of Acanthinucella snails at Mitchell's Cove
2020-05-08
© Allison J. Gong

Lots of Acanthinucella means that lots of barnacles are being eaten. And empty (i.e., dead) barnacle tests are more easily dislodged from the rock than live ones are. A lot of dead barnacles could result in bare patches. And guess what? That's what I saw this morning!

Bare patches in barnacle population
Bare patches in barnacle population at Mitchell's Cove
2020-05-08
© Allison J. Gong

And those aren't just empty spaces where nobody settled. Notice the clean edges. These empty spaces formed because barnacles were there, but died recently and fell off. The abundance of Acanthinucella may have indirectly caused these patches to form--by eating barnacles and weakening the physical structure of the population. Bare space is real estate that can be colonized by new residents. See?

Newly settled barnacles
2020-05-08
© Allison J. Gong

These brand new recruits are about 1 mm in diameter. No doubt more will arrive in the coming months, and this patch will fill up with barnacles again. Vacant space is a limited resource in the rocky intertidal, and the demise of one generation provides opportunity for new recruits. And if the barnacles themselves don't occupy all of the space, then other animals and algae will. That's one of the things I love about the intertidal--it is a very dynamic habitat, and every visit brings something new to light. No wonder I missed it so much!

What do you think?

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: