Skip to content

There are certain creatures that, for whatever reason, give me the creeps. I imagine everyone has them. Some people have arachnophobia, I have caterpillarphobia. While fear of some animals makes a certain amount of evolutionary sense--spiders and snakes, for example, can have deadly bites--my own personal phobia can be traced back to a traumatic childhood event involving an older cousin and a slew of very large tomato hornworms. Even typing the words decades later makes me want to rub my hands on my jeans.

But enough about caterpillars. This Halloween I want to share something that isn't nearly as disgusting, but can still creep me out sometimes. Commonly called skeleton shrimps, caprellid amphipods are a type of small crustacean very common in certain marine habitats. They are bizarre creatures, but a close look reveals their crustacean nature. For example, they possess the jointed appendages and compound eyes that only arthropods have.

Female caprellid amphipod (Caprella sp.)
22 October 2017
© Allison J. Gong

Around here the easiest place to find caprellids is at the harbor, where they can be extremely abundant. The last time I went to the harbor to collect hydroids for my class, the caprellids were swarming all over everything. When I brought things back to the lab I had to spend an hour or so picking the caprellids off the hydroids. I don't think they eat the 'droids, but they gallop around and keep messing up the field of view, making observation difficult. They're essentially just a PITA to deal with, and everything is easier after they've been removed.

Caprellid amphipods (Caprella sp.) at the Santa Cruz Yacht Harbor
23 June 2017
© Allison J. Gong

Caprellids are amphipods, members of a group of crustaceans called the Peracarida (I'll come back to the significance of the name in a bit). They have the requisite two pairs of antennae that crustaceans have, and seven pairs of thoracic appendages of varying morphology. Some of these thoracic legs are claws or hooked feet that like to grab onto things. A caprellid removed from whatever it's attached to and placed by itself in a bowl of seawater thrashes around spastically. Only when it finds something to grab does it calm down. Even then, they attach with their posterior appendages and wave around the front half of the body in what I call the caprellid dance: they extend up and forward, and sort of jerk front to back or side to side. It isn't pretty.

A bunch of caprellids removed from their substrate and dumped into a bowl together will use each other as something to grab. This forms the sort of writhing mass that makes my skin crawl. I was nice enough to give them a piece of bryozoan colony to hang onto, but even so they ended up glomming together.

Now, back to the thing about caprellids being peracarids. The name Peracarida means "pouch shrimp" and refers to a ventral structure called a marsupium, in which females brood their young. Males don't have a marsupium, so adult caprellids are sexually dimorphic. When carrying young, a female caprellid looks like she's pregnant. See that caprellid in the top photo? She's a brooding female. That's all fine, until her marsupium itself starts writhing. This ups the creepiness factor again. Here's that same brooding female, in live action:

Crustaceans obviously don't get pregnant the way that mammals do, but many of them spend considerable energy caring for their young. Well, females do, at least. A female caprellid doesn't just carry her babies around inside a pouch on her belly. Although she isn't nourishing them from her own body in the way of mammals (each of the youngsters in the marsupium is living off energy stores provisioned in its egg), the mother does aerate the developing young by opening and closing the flaps to the marsupium. This flushes away any metabolic wastes and keeps the juveniles surrounded by clean water. As the young caprellids get bigger, they begin to crawl around inside the pouch, and eventually leave it. They don't depart from their mother right away, though; rather they cling to her back for a while, doing the caprellid dance in place as she galumphs along herself.

Until the juveniles strike out on their own they form a small writhing mass on top of a female who can herself be part of a larger writhing mass. And the sight through the microscope of all these long skinny bodies jerking around spasmodically can indeed be very creepy. Fortunately not as creepy as caterpillars, or I wouldn't be able to teach my class or go docking with my friend Brenna. And it's a good thing caprellids are small, 'cause if they were any bigger. . . just, no.

 

Last week I went up to Davenport to do some collecting in the intertidal. The tide was low enough to allow access to a particular area with two pools where I have had luck in the past finding hydroids and other cool stuff. These pools are great because they are shallow and surrounded by flat-ish rocks, so I can lie down on my stomach and really get close to where the action is. At this time of year the algae and surfgrasses are starting to regrow; the surface of the pools was covered by leaves of Phyllospadix torreyi, the narrow-leafed surfgrass.

Parting the curtain of Phyllospadix leaves to gaze into the first pool I was pleasantly surprised to find this. What does it look like to you?

Aglaophenia latirostris at Davenport Landing
8 March 2017
© Allison J. Gong

There are actually two very different organisms acting as main subjects in this photo. The pink stuff is a coralline alga, a type of red alga that secretes CaCO3 in its cell walls. Coralline algae come in two different forms: one is a crust that grows over surfaces and the other, like this, grows upright and branching. Because they sequester CaCO3, corallines are likely to be affected by the projected increase of the ocean's acidity due to the continued burning of fossil fuels. Ocean acidification is one of the sexy issues in science these days, and although it is very interesting and pertinent to today's world it is not the topic for this post. Suffice it to say that changes in ocean chemistry are making it more difficult for any organisms to precipitate CaCO3 out of seawater to build things like shells or calcified cell walls.

It's the tannish featherlike stuff in the photo that I was particularly interested in. At first glance the tan thing looks like a clump of a very fine, fernlike plant. It is, however, an animal. To be more specific, it is a type of colonial cnidarian called a hydroid. I love hydroids for their hidden beauty, not always visible to the naked eye, and the fact that at first glance they so closely resemble plants. In fact, many hydroid colonies grow in ways very similar to those of plants, which has often made me think that in some cases the differences between plants and animals aren't as great as you might assume. But that's a matter for a separate essay.

I collected this piece of hydroid and brought it back to the lab. The next day I took some photos. To give you an idea of how big the colony is, the finger bowl is about 12 cm in diameter and the longest of these fronds is about 3 cm long.

Colony of the hydroid Aglaophenia latirostris
9 March 2017
© Allison J. Gong

And here's a closer view through the dissecting scope.

The colonial hydroid Aglaophenia latirorostris
9 March 2017
© Allison J. Gong

Each of the fronds has a structure that we describe as pinnate, or featherlike--consisting of a central rachis with smaller branches on each side. This level of complexity can be seen with the naked eye. Zooming in under the scope brings into view more of the intricacy of this body plan:

Close-up view of a single frond of Aglaophenia latirostris, showing feeding polyps and two gonangia
9 March 2017
© Allison J. Gong

At this level of magnification you can see the anatomical details that cause us to describe this animal's structure as modular. In this context the term 'modular' refers to a body that is constructed of potentially independent units. A colony like this is built of several different types of modules called zooids, some of which are familiarly referred to as polyps. Each zooid has a specific job and is specialized for that job; for example, gastrozooids are the feeders, while gonozooids take care of the sexual reproduction of the colony. In this colony of Aglaophenia each of these side branches consists of several stacked gastrozooids, which you can see as the very small polyps bearing typical cnidarian feeding tentacles. Aglaophenia is a thecate hydroid; this means that each gastrozooid sits inside a tiny cup, called a theca, into which it can withdraw for protection. Those larger structures with pinkish blobs inside are called gonangia. A gonangium is a modified gonozooid, found in only thecate hydroid colonies, that contains either medusa buds or other reproductive structures called gonophores.

Pretty complicated, isn't it? Who would expect such a small animal to have this much anatomical complexity?


In the second pool I found an entirely different type of hydroid. At first glance this one looks more animal-like than Aglaophenia does, although it is still a strange kind of animal. This is Sarsia, one of the athecate hydroids whose gastrozooids do not have a protective theca. It might be easier to think of these and other athecate hydroids (such as Ectopleura, which I wrote about here and here) as naked, with the polyps not having anywhere to hide.

Colony of the athecate hydroid Sarsia sp.
9 March 2017
© Allison J. Gong

Each of these polyps is about 1 cm tall. The mouth is located on the very end of the stalk. The tentacles, not quite conforming to the general rule of cnidarian polyp morphology, do not form a ring around the mouth. Instead, they are scattered over the end of the stalk.

Here's a closer view:

Colony of the athecate hydroid Sarsia sp.
9 March 2017
© Allison J. Gong

In the hydroid version of Sarsia, the reproductive gonozooids are reduced to small buds that contain medusae. You can see a few round pink blobs in the lower right of the colony above; those are the medusa buds.  The medusae are fairly common in the local plankton, indicating that the hydroid stage is likewise abundant. Here's a picture of a Sarsia medusa that I found in a plankton tow in May 2015.

Medusa of the genus Sarsia
1 May 2015
© Allison J. Gong

The medusa of Sarsia is about 1 mm in diameter and has four tentacles, which usually get retracted when the animal is dragged into a plankton net. Sometimes, if the medusa isn't too beat up, it will relax and start swimming. I recorded some swimming behavior in a little medusa that I put into a small drop of water on a depression slide. It refused to let its tentacles down but you might be able to distinguish four tentacle bulbs.

There's a lot more that I could say about hydroids and other cnidarians. They really are among the most intriguing animals I've had the pleasure to observe, both in the field and in the lab. I've always been fascinated by their biphasic life cycle, with its implications for the animals' evolutionary past and ecological present. Perhaps I'll write about that some time, too.

1

A few days ago I told my friend Brenna that I'd hunt around in the marine lab for a bit of a green alga that she wants to press. I had a pretty good idea of where to look, only the animals I'd seen it on had been removed from the exhibit hall. I asked for and got permission to examine the animals behind the scenes. And fortunately I had remembered correctly, and I was able to pick off some nice clumps of dark green stuff.

Bryopsis corticulans is a filamentous green alga. It grows to about 10 cm in length and is a dark olive color. When emersed it sometimes looks almost black. I've seen it in the intertidal in a few places, where at low tide it resembles nothing so much as a shapeless slime. It's very difficult to see the beauty of organisms when they're out of their natural element, which in this case is water.

B. corticulans emersed during low tide at Mitchell's Cove.
8 June 2016
© Allison J. Gong

But see how pretty it is when submerged?

Bryopsis corticulans
23 January 2017
© Allison J. Gong

One of the reasons I love the algae is their very inscrutability. I enjoy discovering the beauty of organisms that, at first glance, don't look like much. Many of the filamentous algae, both the greens and the reds, have a delicate structure that requires close examination to be appreciated. Fortunately, I have access to microscopes, so close examination is very easy.

The thallus of B. corticulans is relatively simple, consisting of a bipectinate arrangement of filaments.

Apical tip of Bryopsis corticulans.
23 January 2017
© Allison J. Gong

Here's a closer view:

Thallus of Bryopsis corticulans.
23 January 2017
© Allison J. Gong

This is a shot of the main axis and side filaments. The small green blobs are chloroplasts. One thing to notice is that there are no crosswalls separating any of the filaments. That's because the thallus is coenocytic, essentially one large cell with a continuous cytoplasm. Coenocytic cells are common in fungi, the red and green filamentous algae, and a few animals. In animals, coenocytic cells are often referred to as syncytial. They can arise in one of two ways: (1) adjacent cells fuse together; or (2) nuclear replication occurs as usual during normal mitosis but cytokinesis (division of the cytoplasm) does not. However the syncytium arises, it can result in very large cells. Even though B. corticulans itself is a small organism, some algae in the Bryopsidales consist of single cells that can be over 1 meter long!

Sometimes things that appear simple at first glance conceal a deeper complexity when you look more closely.

1

Sea urchins have long been among my favorite animals. From a purely aesthetic perspective I love them for their spiky exterior that hides a soft squishy interior. I also admire their uncanny and exasperating knack for getting into trouble despite the absence of a brain or centralized nervous system. Have you ever been outsmarted by an animal without a brain? I have. It's rather humbling.

Red sea urchins (Mesocentrotus franciscanus) and purple sea urchins (Strongylocentrotus purpuratus) share a common geographic range along the northeastern Pacific but generally live in different habitats. S. purpuratus is the common urchin in tidepools, while reds are almost always subtidal (although I have seen them in the intertidal on very low minus tides). The two species' habitats do overlap a bit, as the purple urchin can live in subtidal kelp forests alongside the reds. There is a commercial fishery for the gonads of red urchins, which are prized as uni by sushi aficionados. I've tried uni once, and it tasted exactly the way I imagined the gonads of a sea urchin would taste. Not a fan. I'd much rather make a different use of urchin gonads.

The other week I collected some urchins from the field, hoping that they'd have nice full gonads. Gametogenesis in many marine invertebrates, including sea urchins, is governed at least partly by annual light cycles. Provided they have sufficient food, purple urchins have ripe gonads and spawn in the winter, from December through March. Reds spawn in the spring, from March through June. In my experience the best time to induce spawning of purps in the lab is December or January, when the urchins have developed gonads but likely haven't spawned yet. There is no way of knowing the sex of any given urchin or the condition of its gonads, so this exercise is somewhat of a crap shoot even with the best of planning.

Ready to induce spawning!
30 December 2016
© Allison J. Gong

Today I shot up my eight field-collected purps, hoping to get at least one male and one female out of the deal. I got lucky with the timing, as one of the smallest urchins was a female and began spewing out eggs. This little female gave a lot of eggs! She was followed by three males and two more females. So out of my eight purps I ended up with three of each sex, and a spawning rate of 75% ain't bad.

I set up some mating crosses and fertilized all of the eggs. I divided the little female's eggs into two batches and fertilized them with the sperm of two different males (M1 and M2). Each of the other females' eggs was fertilized by M1, who gave huge amounts of sperm. When I checked on the eggs about two hours post-fertilization most of them had gone through the first cleavage division and seemed to be developing normally and on schedule.

2-cell embryos of Strongylocentrotus purpuratus
30 December 2016
© Allison J. Gong

Just for the hell of it I decided to shoot up some of the red urchins we have in the lab. I didn't really think they'd spawn, as it's not the season for them to be gravid. Red urchins are large, heavy animals with long and sharp spines and they are much more difficult to handle. Four of the five that I shot up did nothing, as expected. It took a long time, but just as I was about to give up on them the biggest red began dribbling out a couple thin streams of sperm. I examined the sperm under the microscope and they were very active and healthy. Fortunately I hadn't returned the purps to their tanks, and two of the female were still putting out some eggs. I rinsed the purp eggs into a clean beaker, pipetted up some of the red sperm, and added it to the eggs.

Sea urchin eggs are covered by a thick jelly coat. In the video you can see many of the red urchin sperm embedded in the jelly coat of the egg. Despite the frantic activity of the sperm, fertilization (as evidenced by the rising of the fertilization envelope off the surface of the egg) took much longer than it does when eggs and sperm come from the same species.

Egg of a purple sea urchin (Strongylocentrotus purpuratus) fertilized by sperm from a red urchin (Mesocentrotus franciscanus)
30 December 2016
© Allison J. Gong

Look at that beautiful zygote! Fertilization success in this hybrid cross was low, only about 50%. The eggs that did get fertilized went through the first cleavage division after about two hours later, which is right on time.

Eggs of a purple sea urchin (Strongylocentrotus purpuratus) fertilized by sperm from a red urchin (Mesocentrotus franciscanus)
30 December 2016
© Allison J. Gong

It remains to be seen whether or not the few hybrid embryos I have continue to develop. I have a colleague who has hybridized red and purple urchins successfully in the past, and has raised the offspring to adulthood. I don't have any expectations of great success with this little experiment, but it would be very informative to raise known hybrid urchins. I've seen animals in the field that look like hybrids and there's no reason to assume that hybridization between these two free-spawning species never occurs. The adults can be found living side-by-side subtidally, and there's enough overlap in their reproductive seasons that some individuals of each species could very well spawn at the same time. On the other hand, hybridization that can be forced in the lab doesn't necessarily occur in the field. I dumped a lot of red urchin sperm on those purple urchin eggs, and such high sperm concentration may overcome any mechanisms of reproductive isolation that exist under real-life conditions.

I'll know more when I check on things tomorrow.

At the marine lab we have many seawater tanks and tables in various shapes sizes. For my purposes the most useful are the tables. The tables are shallow, about 20 cm deep, but what's nice about them is that water depth can be managed by varying the height of the stand pipe in the drain. I have some critters wandering free within tables and others confined to tanks, colanders, or small screened containers. One of my tables contains the paddle apparatus that stirs jars of babies when I'm raising larvae.

All of these tables are gravity fed from a supply of semi-filtered seawater supply in the ceiling of the building. The seawater flows through some sand filters before being pumped to the top of the building, but is by no means entirely clean. We get all kinds of things recruiting to the surfaces of tables, jars, or anything that sits in a seawater table for more than a few days. Some of the stuff that recruits is a nuisance, such as the spirorbid worms that build tiny calcareous spiral tubes on just about anything and scrape up the knuckles something awful. Other stuff is benign, and more or less ignored until it gets in someone's way. Or until I decide to take a close look at it.

Last year I finally decided to look at some of the red filamentous stuff growing on the bottom and sides of one of the tables. To the naked eye it doesn't look like much, which is why I love having access to a good compound scope. Here's my notebook page from that day:

Observations and sketches of the red alga Antithamnion defectum. date © Allison J. Gong
Observations and sketches of the red alga Antithamnion defectum.
16 June 2015
© Allison J. Gong

Today I took some pictures of the same stuff. It's really pretty and delicate when you see it magnified!

Filaments of A. defectum at 100X magnification. 17 August 2016 © Allison J. Gong
Filaments of A. defectum at 100X magnification.
17 August 2016
© Allison J. Gong
Close-up view of an apical tip of A. defectum at 200X magnification. 17 August 2016 © Allison J. Gong
Close-up view of an apical tip of A. defectum at 200X magnification.
17 August 2016
© Allison J. Gong

I am always gratified when I look back at drawings I made in the past, and find that they still hold true and can be corroborated by photographs. The filamentous reds are so pretty! This is not the best time of year to find sexy algae, and I saw no reproductive structures on any of the filaments I examined. Maybe next spring.

In a different table (the table where the paddle apparatus is, actually) there is some brownish fluffy stuff growing on the bottom surface. I took a look at some of it and noticed right away that the threads didn't have their own inherent structure the way the Antithamnion defectum does. These threads seemed to be sticky, and when I picked up a little piece of the fluff it collapsed into a blob. I had to tease apart the threads in a drop of seawater to make sense of what was going on.

Observations and sketches of benthic diatoms. 17 August 2016 © Allison J. Gong
Observations and sketches of benthic diatoms.
17 August 2016
© Allison J. Gong

These diatoms are really cool! I have no idea which species they are, though. We do have local diatom genera (Thalasionema and Thalassiothrix) in which adjacent cells stick together at their ends to form this kind of wonky chain, but the cells themselves look different. So for now these are unidentified diatoms.

There's no doubt that they are diatoms, though. They have the typical diatom color, a golden-brown that I would name Diatom if I got to name colors, and I could see through the microscope that the cells are enclosed in a silica structure called a frustule.

This is the diatom color:

Chains of benthic diatoms. 17 August 2016 © Allison J. Gong
Chains of benthic diatoms at 100X magnification.
17 August 2016
© Allison J. Gong

At higher magnification the sculpting on the frustule surfaces becomes visible. Unfortunately, at higher magnification you necessarily have less depth of field, so it's more difficult to take photos that show this kind of detail.

Benthic diatoms at 200X magnification. 17 August 2016 © Allison J. Gong
Benthic diatoms at 200X magnification.
17 August 2016
© Allison J. Gong

Some of these cells appear to be doubled. I think one of two things is going here: either the cells simply remain attached to each other by a thin layer of mucilage, or a cell has recently divided and the two cells that are stuck together are the resulting daughter cells. Throughout the growing season diatoms reproduce clonally (each cell divides to produce two genetically identical daughter cells), and their populations can expand very rapidly in response to either natural or artificial nutrient inputs. Because the cells are enclosed by a rigid frustule, however, this clonal replication cannot continue indefinitely. Perhaps diatom reproduction is fodder for another blog post, if people are interested.

But don't those cells look cool?

%d bloggers like this: