Skip to content

This weekend a subset of my students and I spent a day at the Fort Ord Natural Reserve (FONR) to participate in the 2018 spring Bioblitz. We were supposed to visit FONR for a class field trip in early March to do some vegetation studies, but that trip was rained out. Today's visit was sort of a make-up for that missed lab; because it's a Saturday I couldn't compel the students to attend, but I offered a little extra-credit for those who did. It just so happened that Joe Miller, the field manager at FONR, had organized a Bioblitz for another group of students, and he welcomed my Ecology class as well.

Map of communities surrounding Monterey Bay
© Google Maps

Located adjacent to the city of Marina in Monterey County, FONR is one of five natural reserves administered by the campus of UC Santa Cruz. The other four are the Campus Reserve (on the main campus of UCSC), Younger Lagoon Reserve (on UCSC's Coastal Science Campus), Año Nuevo Natural Reserve (up the coast in San Mateo County), and Landels-Hill Big Creek Reserve (along the Big Sur coast). FONR occupies some 600 acres of a former military base that was closed in 1994. The reserve opened in 1996. As with all the other UC natural reserves, FONR exists to provide students, teachers, and researchers with natural lands to be used as outdoor classrooms and laboratories. Field courses at UC Santa Cruz and CSU Monterey Bay make extensive use of FONR, and students carry out independent studies and internships there.

After all of the participants arrived at the Reserve, Joe described the activities he had planned for the day. He told us that we could wander around the Reserve on our own if we wanted, but there were several hikes we could choose to join:

  • One to where some people were finishing up the day's bird banding activities
  • One to collect samples of environmental DNA
  • One to ID various tracks in the sand
  • One to the different habitats and vegetation types
  • One to check out some pitfall traps for small rodents and reptiles

Because my knowledge of the local flora is sorely lacking, I went on the plant hike with Joe. Many of the spring wildflowers had either finished or were finishing up their yearly bloom. The poison oak (Toxicodendron diversilobum) is looking amazing this year; I think it has been able to take advantage of two consecutive wet seasons with a decent amount of rain. There were many poison oak plantlets scattered around all over the place, and the established bushes are lush and green. There is no way I didn't come into contact with the stuff at least once on this hike, so today is going to be the true test of whether or not I am allergic to it.

One of many poison oak (Toxicodendron diversilobum) plants at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

Much of the terrain at FONR is a maritime chaparral. The soil is extremely sandy (Pleistocene sand dunes, Joe says) with a poor nutrient load and water content. It's not a desert, because we do get a fair amount of precipitation along the Monterey Bay, but the plants have adapted to thrive with low soil moisture levels. It's also often very windy, and there are no trees. Even the coast live oaks (Quercus agrifolia), which can be magnificently massive and meandering, are stunted here. Much of the foliage is low-growing perennial shrubs or annual plants.

Coast live oak (Quercus agrifolia) growing above coyote bush (Baccharis pilularis) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

Joe led us through the habitats of the Reserve, mostly on trails but also along narrow-to-nonexistent tracks that we called Poison Oak Lane, Rattlesnake Drive, and Tick Alley. And yes, we did see a rattlesnake! My husband spotted it, right about where he was going to put his foot. It wasn't a big snake, maybe half a meter long, and was sunning itself in a narrow opening between manzanita bushes. I didn't stop to take a picture because there wasn't a good space to do so, and I wanted to let other hikers pass the snake quickly. The snake didn't seem to react to us, but it's always a good idea to leave them alone.

Just beyond where we saw the rattler, Joe had found a pair of southern alligator lizards (Elgaria multicarinata) mating. When Joe picked them up the male had grabbed the female with a bite behind her head; he does this to keep her from running away, and it also shows his strength and suitability as a father for the female's offspring. The lizards didn't like being interrupted in copulo, so to speak, and the male released the female and escaped back to the ground, leaving his lady love behind in Joe's hand. Hopefully they were able to find each other again once they were both let go.

Joe Miller (left) holding a female southern alligator lizard (Elgaria multicarinata) in his left hand
12 May 2018
© Allison J. Gong

To me, the picture above exemplifies what a Bioblitz is all about. We have two people examining a natural phenomenon, and one of them is taking a picture that he will presumably upload to iNaturalist. People learn a lot when they participate in a Bioblitz--they usually see things they've never paid attention to before, and when their observations are ID'd or corroborated by the community of iNat experts, they get to put a name to the thing they saw. True, it's a better learning experience to sit down with a specimen, hand lens, and book to figure out what an organism is, but most people don't have either the inclination or the luxury of time and the necessary books. And while I'd rather have people look at the real thing with their eyes instead of their phones, getting people to go outdoors and pay any attention at all to their surroundings is a minor victory. I find Bioblitzes to be a little unsettling sometimes. My preferred method for observation is to examine fewer things in greater depth; this is what my graduate advisor Todd Newberry referred to as "varsity" observations. I don't think a Bioblitz has any place in varsity studies, because of its very raison d'être--to record as many observations as possible--means to some degree that instead of taking a deep look you have to glance-and-go. Still, it does have its place in natural history, and I value it as a way to get more people involved in science.

I was on the plant hike, so many of the organisms I photographed and uploaded to iNat are new to me. Some are California endemics and all have adapted to survive in the difficult conditions of a maritime chaparral.

Eriastrum sp., a plant with delicate blue-purple flowers, at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

And I did see one of the California native thistles. Invasive thistles are such a problem that the knee-jerk response is to stomp on them or yank them out of the ground. This one, for which I'm still waiting on an ID confirmation, is silvery and sort of looks like cobwebs. Joe said that its blossom is a bright pink.

A California native thistle, possibly Cirsium occidentale, at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

And one of my newish old favorite wildflowers, Castilleja exserta, was there. The purple owl's clover occurs throughout California; in 2017 I saw a lot of it on my wildflower excursion to the southern part of the state. It varies in color from purple to pink to white and thus has multiple common names.

Castilleja exserta, the purple owl's clover, at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

We also saw a lot of the peak rushrose, Helianthemum scoparium. It is a California native species that does well in dry, sandy areas, such as throughout most of Fort Ord.

Peak rushrose (Helianthemum scoparium) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

While I was leaning down to photograph this plant, one of the Reserve volunteers pointed out a much paler version nearby. He told me that most of the time the peak rushrose has brilliant yellow flowers, but there are always a few that have this much more delicate color.

Pale form of peak rushrose (Helianthemum scoparium) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

And speaking of yellow, I discovered another new-to-me organism! What at first glance looked like a blotch of spray paint on a tree trunk turned out to be something much more interesting--a gold dust lichen in the genus Chrysothrix.

Gold dust lichen (Chrysothrix sp.) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

The lichen book1 that I have describes two species of Chrysothrix, both of which can be found in coastal regions of California. The species have some overlap in habitat, with C. granulosa usually living on bark and occasionally on wood or rock, while C. xanthina can regularly be found on bark, wood, and rock. Nor is color by itself an entirely useful characteristic: C. granulosa is described as brilliant yellow, and C. xanthina can be brilliant yellow, yellow-green, or yellow-orange. There are certain tests that would be able to distinguish between the species, but field ID when the lichen is 'brilliant yellow' remains problematic. So while I'd guess that this specimen is Chrysothrix granulosa (based on a combination of color, location, habitat, and good old-fashioned gut feeling) I can't be at all certain.

The discussion of lichens brings us around to the animals. Did you know that fungi are more closely related to animals than they are to plants? Well they are, despite being included in more botany than zoology courses. And of course we did see animals on our plant hike. Hawks and turkey vultures soared overhead, song birds and hummingbirds flitted among the trees and shrubs, alligator lizards mated, and there was that one rattlesnake, which even the people on the herps walk didn't get to see. As we hiked through the various plant communities in the Reserve, Joe occasionally called out "If you see a horned lizard, catch it!" A woman in our group, Yvonne, managed to do so, despite being loaded down with a backpack and a camera. She pounced on it and held it up for us to photograph.

Horned lizard (Phyronosoma sp.) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong
Horned lizard (Phrynosoma sp.) at Fort Ord Natural Reserve
12 May 2018
© Allison J. Gong

Cute little thing, isn't it?

The last critter we saw as we were walking back to the gate after lunch was a juvenile gopher snake (Pituophis catenifer). By the time I got there the snake was resting in the road. It was a very pretty snake. I wanted to take it home and release it into my yard, where there are enough gophers to feed an entire family of snakes, but alas, collecting is not allowed at the Reserve. I do wish that a gopher snake would move into my yard, though.

It is now about 24 hours since we got home. We did our tick checks and didn't find anything, thank goodness, then showered and scrubbed. There's no doubt that we were both exposed to poison oak; it is impossible NOT to be, this time of year. This is the real test for whether or not I am allergic to it. I haven't been so far, but there's a first time for everything and I will never say that I will never get it. My husband, who gets poison oak very easily and very badly, says it could take up to two days to be sure. I'm not itchy today. Tomorrow may be a different story, though.

 


1Sharnoff, S. 2014. A Field Guide to California Lichens, Yale University Press

How does a group of people go about trying to save a federally endangered species? The answer, of course, depends on the species. However, you can bet your bottom dollar that it takes a tremendous effort over many years by many dedicated and talented people, all of whom know that in the end their work may not succeed. Ultimately it is society who decides whether or not such efforts, costly in both person hours and dollars, are worthwhile. After all, we are the people who vote elect the legislators to decide how our tax monies are spent. Not only that, but which of the many endangered species should we try to save? Can we save them all? Should we try to anyway? If not, then how do we decide which species are worth the effort? And what should we do about the species that are deemed unworthy?

Erick (green jacket) gives my students an introduction to the weir on Scott Creek
9 March 2018
© Allison J. Gong

Today I took my Ecology students to locations on Scott Creek and Big Creek in northern Santa Cruz County, where biologists are working on saving the coho salmon, Onchorhynchus kisutch. Our guide for the day was Erick, a fisheries biologist with the National Marine Fisheries Service (NMFS), a division of the National Oceanographic and Atmospheric Administration (NOAA). Erick's job is to maintain the genetic diversity of this population, which occupies the southernmost part of the coho's range in North America. The coho is a federally endangered species in California, and this southern population represents the species' best chance for surviving and adapting to the ocean and river conditions that are predicted due to climate change.

Erick explaining how the fish trap works
9 March 2018
© Allison J. Gong

Our first stop was at the weir and fish trap on Scott Creek. There are actually two fish traps in this location: one to catch adult salmon swimming upstream and one to catch smolts migrating downstream (more about that in a bit). Adult salmon returning to spawn come into the trap and end up in the box to Erick's right. Every day during the spawning season at least two people come down to the weir to count, measure, sex, and weigh each fish in the trap. Then the salmon are trucked up to the hatchery, where they will be used for spawning under controlled conditions. The stretch of creek behind Erick is located between the fish traps; there are no salmon in it because the adults are all captured by the large trap, and the outgoing smolts are caught in the upstream trap.

Upstream end of the smolt trap on Scott Creek
9 March 2018
© Allison J. Gong

At this point the entire creek passes through those screened panels, and the fish are directed into this box:

Smolt trap on Scott Creek
9 March 2018
© Allison J. Gong

The smolts are netted out, put into buckets, and carried downstream past the adult fish trap. From there they migrate out to the ocean, and if all goes well they will spend the next two years feeding and growing before they return to the creek as adults.

Adult coho salmon caught in the trap are trucked up to the hatchery, which is located on Big Creek. There has been a hatchery on this site since the early 1940s. The current installation is operated by the Monterey Salmon and Trout Project, with permission of the landowners and from the state. Erick and his fellow fisheries biologists are charged with maintaining the genetic diversity within this small population of fish. They do so by keeping track of who mates with whom and making sure that closely related individuals do not mate. Each female salmon's eggs are divided into separate batches to be fertilized with as many as four males. Each male's sperm can be used to fertilize up to four females' eggs.

Fertilized eggs are incubated in a chamber set at 11°C and 100% humidity; in other words, they are not incubated in water. Once they hatch they are transferred to trays of water, where they remain until they have used up their entire yolk sac and need to be fed. Each of these trays contains one family of fry; in other words, all of the babies from one female-male mating.

Erick shows us trays containing salmon fry
9 March 2018
© Allison J. Gong

From these trays the fishlets move into indoor tanks and then outdoor tanks. They are fed, and this is when they develop one of the bad habits of all hatchery fish: they get used to food coming from above and drifting down. In the wild, a juvenile salmon in a stream feeds on aquatic insects, small crustaceans, and the like. Many of their favored prey items are benthic, but they will also feed on insects at the surface. To do so, they have to spend time going up and down in the water column, when they are at risk of being eaten themselves. Hatchery-reared juveniles don't have predators to deal with and have learned that food lands on the surface of the water. They don't understand the need to remain hidden, and many of them get picked off by birds and other fish.

As a safeguard against an extremely poor return of spawning adults, each year some portion of the juveniles are kept at the hatchery and grown to adulthood on-site. This means that even if very few fish return to the river, or if there aren't enough females, the captive breeders can be used to make up the difference. This year, the 2017-2018 spawning season has so far been successful. As a result there were adult salmon that, for whatever reason, were not used as breeders. Today just happened to be the day that they would be returned to the creeks, where they may go ahead and spawn, and we got to watch part of it.

Returning to the story of the outmigrating juveniles, one of their biggest challenges is smoltification (my new favorite word), the process of altering their physiology in response to increasing salinity as they move towards the ocean. This is a unidirectional change in physiology for salmon; once they have fully acclimated to life in the ocean they cannot re-acclimate to the freshwater stream where they were born. Smoltification takes place over a few to several days. The hatchery has several year-old fish ready to smoltify (I think that's the verb form of the word) and will be releasing them in several batches at approximately two-week intervals starting later in March. The outgoing fish are tagged so that when they return in two years the hatchery staff will be able to determine which batch they came from, helping them understand what release conditions resulted in the greatest survival and return of adults. Kinda cool, isn't it?

The bad news is that as of right now any baby fish released into the creek won't be able to get to the ocean. We haven't had enough rain recently to break through the sand bar that develops on the beach where Scott Creek runs into the sea.

Scott Creek Beach
9 March 2018
© Allison J. Gong

It will take some decent rainfall to generate enough runoff to breach the sand bar. A good strong spring tide series would help, if it coincides with a big runoff event. We are supposed to get some rain this weekend and into early next week. I hope it's enough to open the door to the ocean for the smolts. In the meantime, they will hang out on the other side of the highway in the marsh.

Scott Creek just upstream of where it crosses under Highway 1
9 March 2018
© Allison J. Gong

They'll have to wait until the ocean becomes available to them, and in the meantime will be vulnerable to predators, especially piscivorous birds. Hopefully the rains in the near forecast will be heavy enough to open up the sand bar and the smolts will be able to continue their journey out to sea. Good luck, little guys!

This week's field trip for my Ecology class was the first of two visits to the Santa Cruz harbor. The students' task was to select a site to monitor for a semester-long study of ecological succession. The floating docks at the harbor are the ideal site for this kind of study because I know from experience that the biota changes from season to season throughout the year, on a time scale that can be observed within the confines of a 16-week semester. We will return to the harbor in nine weeks and students will document how their sites have changed in that time.

California is swinging back into the severe drought situation we had before the epic 2016-2017 rainy season. Since the current rainy season began on 1 October 2017, we've had hardly any rain at all and very little snow in the Sierra. Fools who thought that one rainy season would get us out of drought are just that--fools. However, one nice thing about drought conditions is that visibility at the harbor is pretty good. Without any significant runoff the water is nice and clear, making it easy for the students to see what's growing on their section of the docks.

Students examining their study plot
9 February 2018
© Allison J. Gong
Sometimes a little ballast is required!
9 February 2018
© Allison J. Gong

The assignment for this first visit to the harbor was to choose a site, identify what lives on the site, and draw a map of it. I had warned them that all the interesting biology on the docks occurs below the level of their feet, and that they would have to lie or kneel on the dock to get a good look at what's going on down there. Some of them tried to take a photo of the entire site, but it's impossible to get far enough away. Unless you're actually in the water, from where it would be easy. Yeah, you could don a wetsuit and get in the water, but the harbor isn't the most ideal place to go for a morning swim.

A little back story on the docks at the Santa Cruz harbor

Remember the magnitude 9.0 earthquake and subsequent tsunami that occurred in northern Japan several years ago? That was on 11 March 2011 at 14:46 local time. That morning in Santa Cruz we received a tsunami warning. I didn't venture down to the harbor (I think I was working at the marine lab that day) but here's a video shot by a woman who watched the ~0.5 meter tsunami tear through the upper harbor:

Amazing, the destructive power of such a small wave, isn't it? Boats were wrenched from their moorings and slammed into other boats and harbor infrastructure. I forget the total dollar amount of damage that our harbor sustained, but as a result all of the docks were replaced in the next few years. I did happen to be at the harbor with a group of students on one of the days that the old docks were being removed. It was heartbreaking to see the docks, carrying decades of biological growth on them, dumped in the parking lot to dry out in the afternoon sun. I imagine they were eventually hauled out to the landfill. 

Since then, the biota on the new floating docks seems finally to be stabilizing. If I had been teaching Ecology back in 2013, we would have had pristine habitat in which to observe honest-to-goodness primary succession. As things are, however, I'm giving students the option of scraping all or part of their plot clear, to simulate primary succession. Their other option is to leave the plot as-is, and pick up the succession process somewhere in the middle and see what happens from this point forward.

So, what did they see down there? 

Well, even though the water was relatively clear, a lot of the photos looked like this:

9 February 2018
© Allison J. Gong

I can identify much of the stuff in this photo, but this isn't the best shot to showcase the biodiversity on the docks. I decided that the camera would do a better job if I used it to photograph individual organisms instead. Here are some of my favorites.

This shot is looking straight down along the edge of one of the docks. The macroscopic life begins 2-3 cm below the waterline, and even above that the dock surface is covered with microscopic scuzzes.

White plumose anemones (Metridium senile) at the Santa Cruz harbor
9 February 2018
© Allison J. Gong
Oral view of white plumose anemones (Metridium senile) at the Santa Cruz harbor
9 February 2018
© Allison J. Gong

I had shown the students pictures of organisms they would be likely to see at the harbor. One of the critters that shows up sporadically is the introduced hydroid Ectopleura crocea. Later in the semester we will discuss species introductions and invasions in more detail. Harbors generally tend to be heavily populated by non-native species, and our local harbor is no exception. The species of Ectopleura found in harbors has hydranths that can be 8-10 cm long, and when it occurs it tends to be quite conspicuous. The congeneric species, E. marina, lives in intertidal in some areas on the open coast; I've seen it in a few tidepools at Davenport Landing, for example. The intertidal species is much smaller, about 2-3 cm tall and doesn't form the dense clumps that typifies E. crocea.

The non-native hydroid, Ectopleura crocea, at the Santa Cruz harbor
9 February 2018
© Allison J. Gong
Caprellid amphipods at the Santa Cruz harbor
9 February 2018
© Allison J. Gong

The ubiquitous caprellid amphipods were crawling all over everything, as usual. Some of the students really didn't like these guys and one of them had the same reaction to them that I do, which is a general shudder. They're sort of cute in still photos, but when they start inchworming around they look sort of creepy. And when there's a bunch of them writhing around in an oozy mass, they're REALLY creepy.

 

 

 

One of the most conspicuous worms at the harbor is Eudistylia polymorphora, the so-called feather duster worm. They come in oranges, purples, and yellows. This one was pure white. Lovely animal!

Feather duster worm (Eudistylia polymorpha) at the Santa Cruz harbor
9 February 2018
© Allison J. Gong

Tube-dwelling polychaete worms, such as Eudistylia, don't have much in the way of a head but they do have many light-sensitive eyespots on the tentacles. They react very quickly to many stimuli, and even a shadow passing over a worm causes it to yank its tentacles into its tube in the blink of an eye. Usually they're not too shy, though, and will extend their tentacles soon to resume feeding.

All told we were on the docks for about 2.5 hours. Not a bad way to spend a glorious morning, is it?

9 February 2018
© Allison J. Gong

 

2

For as long as sentient humans have walked across the surface of the planet, they have observed the world around them. Quite often these observations had direct life-or-death consequences, as most of survival had to do with finding food while not becoming someone else's dinner. Fast forward a few million years and we find ourselves mired in technology, often interacting with the outside world through some sort of digital interface. And yes, I totally get the irony of writing that statement in a blog. Be that as it may, I've found that people generally don't pay much attention to what's going on around them. My job as a biology professor is to teach some of the forgotten skills of the naturalist, including the practice of observation.

Today I took my Ecology students birdwatching. We looked at other things, of course, but birds were the primary focus of today's observations. We started the day near the mouth of Elkhorn Slough in Moss Landing, where we were immediately challenged to identify some shorebirds. Fortunately we had a guest lecture from a seabird biologist yesterday, and she gave us some important clues to help us with our field IDs.

Some shorebirds are fairly easy to identify, such as this long-billed curlew (Numenius americanus). It was foraging in a stand of pickleweed just off the road, which is the only reason I was able to take a decent photo of it.

Long-billed curlew (Numenius americanus) at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Long-billed curlew (Numenius americanus) at Elkhorn Slough.
18 March 2016
© Allison J. Gong

We also saw marbled godwits (Limosa fedoa), willets (Tringa semipalmata), as well as the flocking "peeps," which we never got a really good look at but all agreed might have been sanderlings (Calidris alba).

One of the things we had been warned about was the difficulty of identifying gulls. There are some features that help when the birds are in adult breeding plumage, but gulls go through several juvenile plumages before attaining their adult colors and there's a lot of phenotypic overlap among species. Case in point:

Gulls (Larus spp.) on Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Gulls (Larus spp.) on Moss Landing State Beach.
18 March 2016
© Allison J. Gong

Some of these adults are western gulls (Larus occidentalis) but some look different (smaller bodies, different beak coloration). They might be sub-adult westerns or another species entirely. And even the birds in juvenile plumage varied a lot; some were speckled or mottled while others were more uniformly colored. Several birds (not in this photo) had pale gray backs and pale tan flanks. According to my field guide, National Geographic's Field Guide to the Birds of North America, there are several species that have this plumage in their second or third winter. We kind of gave up on the gulls, but to be honest we didn't have a lot invested in identifying them.

The highlight of the beach part of the field trip, at least for me, was seeing snowy plovers (Charadrius nivosus). These tiny birds are perfectly colored to hide in the sand, and unless they move they are almost impossible to see. I found them because we unwittingly wandered too far up the beach towards the dunes and accidentally flushed them from their divots in the sand.

Snowy plovers (Charadrius nivosus) at Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Snowy plovers (Charadrius nivosus) at Moss Landing State Beach.
18 March 2016
© Allison J. Gong

Can you spot all four plovers in this photo? Here's another quartet:

Snowy plovers (Charadrius nivosus) at Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Snowy plovers (Charadrius nivosus) at Moss Landing State Beach.
18 March 2016
© Allison J. Gong

This morning I saw my first humpback whale of the season. A couple of whale watching boats were lingering around the mouth of the harbor, which should have clued us in that there was something going on. However, it took a kayaker to tell us that there were breaching humpbacks just off the jetty before we realized. And I call myself a naturalist? Sheesh.

This bird is, I think, a third-winter western gull (L. occidentalis).

Western gull (Larus occidentalis) at Elkhorn Slough in Moss Landing, CA. 18 March 2016 © Allison J. Gong
Western gull (Larus occidentalis) at Elkhorn Slough in Moss Landing, CA.
18 March 2016
© Allison J. Gong

This species is endemic to the California Current, which means that it is found nowhere else. The pink legs are characteristic of western gulls, and the black on the tip of the bill indicates a third-winter bird. Adults have a red spot towards the end of the bill but not on the very tip. If you look closely you can see that this bird has a tiny bit of red immediately proximal to the black smudge.


After lunch we convened at the Elkhorn Slough National Estuarine Research Reserve visitor center, across the highway and inland a bit from our morning site. The students got a 30-minute orientation to the history and geography of the Slough, then we went on a hike.

Orientation to the Elkhorn Slough National Estuarine Research Reserve. 18 March 2016 © Allison J. Gong
Orientation to the Elkhorn Slough National Estuarine Research Reserve.
18 March 2016
© Allison J. Gong

The first leg of the hike was a short walk to what is appropriately called the overlook. This is where I gave the students their only real assignment of the day. They had to spend 10 minutes in silent observation. They could write in their notebooks and look around with binoculars, but they were not allowed to talk at all. With some groups this is a nigh-impossible feat, but these students did a fantastic job. After the 10-minute observation period we discussed what they had seen and heard. One student said he heard 26 bird calls, but didn't know how many of them were the same bird making different calls. Others mentioned the sounds of human activity--traffic on the highway, planes flying overhead, the beep-beep-beep of a truck in reverse--as well as the buzz of insects and birds. I asked if anyone else had noticed the shadow of a turkey vulture that flew directly over us.

Silent observation period at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Silent observation period at Elkhorn Slough.
18 March 2016
© Allison J. Gong

I think this is a very valuable exercise and would like to extend this period of silent observation to 15 or 20 minutes for future classes. In a lot of ways class always feels a little frantic, and to slow down and simply be a part of nature is a luxury of time that many of us don't have. Alas, we had other places to visit on the hike and needed to get moving again.

Turkey vulture (Cathartes aura) in flight over Elkhorn Slough. 18 March 2016 © Allison J. Gong
Turkey vulture (Cathartes aura) in flight over Elkhorn Slough.
18 March 2016
© Allison J. Gong

Much of Elkhorn Slough used to be a dairy, and the Slough is still surrounded by agricultural fields. There are two barns on the Reserve, named Big Barn and Little Barn. Little Barn is used for equipment storage and isn't open to the public, but you can walk into Big Barn. There are two barn owl boxes in Big Barn. We searched under them for owl pellets; we didn't find any intact pellets but did see some that had been dissected by previous human visitors.

Little Barn (foreground) and Big Barn (background) at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Little Barn (foreground) and Big Barn (background) at Elkhorn Slough.
18 March 2016
© Allison J. Gong

I don't think I've ever seen this much green at Elkhorn Slough. All of the El Niño rains have brought forth a lot of wildflowers and grasses. We hiked past a large stand of non-native poison hemlock (Conium maculatum) on our way to Big Barn. That stuff is going to be difficult to eradicate, as it spreads quickly and outcompetes native species. And yes, this plant is highly toxic to mammals and was, in fact, used by the ancient Greeks for human executions (including that of Socrates).

When we returned to the visitor we asked the Reserve's naturalist, Jane, to take our picture. So this is class photo #1 of the semester. It's not complete, as three students were absent today. I hope to get a picture of the entire class another day.

OLYMPUS DIGITAL CAMERA

I wanted to take the students to the woodpeckers' acorn granary, but we didn't have time to hike that far. Spring break is coming up week after next, and I think I'll go back to the Slough to say "hello" to the family of acorn woodpeckers. I'm looking forward to having more time than I do at the moment to play outdoors. I want to do some drawing, too!

This year I'm teaching Ecology for the second time. It is a field-intensive course: we have all day on Fridays to meet outside the classroom and do something outdoors. Most people understand that hands-on experiences are the best way to learn, whether the subject matter is field-based or computer-based (such as working with software for statistical analyses), and part of my job this semester is to provide as many diverse experiential activities as I can for my students. As I am a marine biologist by training and inclination the course is biased towards marine ecology, but I'm doing my best to include terrestrial activities as well.

Today we visited the Younger Lagoon Reserve on the Long Marine Lab campus, to participate in the ongoing habitat restoration project. We were met by Beth Howard, the reserve manager, and Tim Brown, the reserve steward, who gave us a brief history of the reserve and the conservation work going on there.

Beth (aqua jacket) and Tim (yellow jacket) give us the rundown on restoration at the Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
Beth (aqua jacket) and Tim (yellow jacket) give us the rundown on restoration at the Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

We are standing in a plot that had very recently (as in within the last week) been planted with young grasses. The reserve staff, volunteers, and student interns collect seeds from local populations of native plants, germinate and grow them up in the greenhouse, and then plant them the following spring. The idea is that in a few years the larger scrub plants, such as coyote bush and sticky monkey flower, will outcompete the non-native weeds and the plant community will more or less take care of itself. The annual flowering plants should re-seed and repopulate the area at the end of the season.

The master design in this area of the Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
The master design in this area of the Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

Tim, as the reserve steward, designed this bit of the reserve. The areas within the polygons are to be planted with flowering annuals, while the spaces between polygons are to be filled with perennial grasses. To make seed gathering easier, we were told to plant in patches, resulting in medium-sized patches of several plants of one species grouped together.

In addition to helping plant upwards of 1500 plants today, we got to see how last year's plants are doing! I'm proud to report that they have filled in beautifully and grown a lot:

On the right: Plants that my students and I planted last year. On the left: Plants that were set out about a week ago. Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
On the right: Plants that my students and I planted last year. On the left: Plants that were set out about a week ago. Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

Not all the vegetation in the right side of the photo was the stuff that we planted last year. Some of it was weeds. The reserve workers are about to shift from planting mode to weeding mode, to remove as many weeds as possible before they have a chance to flower and set seed.

When it was time to start the actual planting, we were shown how to make holes and insert the baby plants.

Demonstration of the "dibble dance." Younger Lagoon Reserve © Allison J. Gong
Demonstration of the "dibbler dance." Younger Lagoon Reserve
© Allison J. Gong

The dibbler is a nifty tool that makes holes in the ground. You clear off the layer of mulch, shove the dibbler into the soil, and wiggle it around, making a perfectly round hole. The plants are grown in cone-tainers, that not-so-coincidentally are the exact same size and shape as the holes made by the dibbler. I asked Beth, and she confirmed that the dibbler and cone-tainers are made by the same company. Once the dibbler has made the hole you remove a plant from a cone-tainer, stick it in the hole, tamp down the soil around it, and replace the mulch.

We were instructed to place the holes 18" apart, and not in a strict grid pattern. The goal is to restore a natural setting, not create a formal garden. After the instructions we all got to play in the dirt.

Student working at YLR Students at YLR Student at YLR Students at YLR

In addition to planting flowering annuals in a couple of the polygons, we also did this:

Native grasses my students and I planted at Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
Some of the native grasses my students and I planted at Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

After our work in the field we went across the marine lab to Younger Lagoon. It rained on us for a while, and we sheltered under the lean-to and looked out over the lagoon. It's beautiful even in the rain.

Younger Lagoon 4 March 2016 © Allison J. Gong
Younger Lagoon
4 March 2016
© Allison J. Gong
Male red-winged blackbird (Agelaius phoeniceus) at Younger Lagoon. 4 March 2016 © Allison J. Gong
Male red-winged blackbird (Agelaius phoeniceus) at Younger Lagoon.
4 March 2016
© Allison J. Gong

This red-winged blackbird was loudly staking his claim to a bit of territory. He never showed off his red epaulettes, though. Another bird was replying from the top of a cypress tree a short distance away. The back-and-forth went on for about five minutes, before one of the birds flew off.

For the first time I got to hike the trail that parallels the east side of Younger Lagoon. We didn't go down onto the beach, but I was able to see a perspective of the large rock at the mouth of the lagoon that I'd never looked on before.

Large rock at the mouth of Younger Lagoon. 4 March 2016 © Allison J. Gong
Large rock at the mouth of Younger Lagoon.
4 March 2016
© Allison J. Gong

Does anybody else see the profile of Abraham Lincoln in this rock?

Today my students and I visited the Monterey Bay Salmon and Trout Project hatchery, to learn about local efforts to save the federally endangered coho salmon (Oncorhynchus kisutch). The coho is one of five species of Pacific salmon found on the coast of North America, the other four being the Chinook (O. tshawytscha), the chum (O. keta), the sockeye (O. nerka), and the pink (O. gorbuscha). The coho's range extends in the North Pacific from northern Japan up along Russia, across the Aleutians, and down the coast of North America to the northern bit of Monterey Bay. In our area the coho return to their natal streams (Scott Creek, Big Creek, and occasionally the San Lorenzo River) during the winter rains in January and February.

The local population of coho make up an evolutionarily significant unit (ESU). This means that they are locally adapted to the extent that they are biologically and genetically distinct from other populations. For example, coho from Alaska, where they are much more common, cannot be successfully transplanted into our watershed because they are genetically programmed to spawn in the fall, the time of year when our streams are dry or disconnected from the ocean due to sand bars. So these fish aren't just any old salmon. They have evolved to live in this particular watershed and as such are irreplaceable.

Our first stop of the morning was to the fish trap on Scott Creek. The weir, the structure that extends across the river in the photo below, traps fish that are swimming upstream. Once on the upstream side of the weir, the fish are directed into the cage, from which they can be removed so that fisheries biologists can collect life history data--species, sex, weight, length--before they are released to continue their journey upstream (if they are steelhead) or transported to the hatchery to be spawned (if they are coho).

Students visiting the fish trap on Scott Creek. 19 February 2016 © Allison J. Gong
Students visiting the fish trap on Scott Creek.
19 February 2016
© Allison J. Gong

No fish were in the trap when we got there this morning but our host, a NMFS biologist named Erick, told me that eight coho had been caught yesterday. We did see a pair of steelhead swimming in the water upstream of the weir. Anytime I see a fish out of water, I forget how difficult it is to find them when they're in their natural habitat. The spots on a steelhead's back blend in perfectly with the ripples of the water and the gravel of the stream bed.

Pair of steelhead in Scott Creek. 19 February 2016 © Allison J. Gong
Pair of steelhead in Scott Creek.
19 February 2016
© Allison J. Gong

Do you see two faintly reddish blurs in the photo above? Those are the fish. They are facing upstream, to the right. The larger fish on the top is the female.

After the visit to the fish trap on Scott creek we drove up to the hatchery, which is located along Big Creek. The hatchery's day-to-day operations are run by a couple of people from MBSTP. During the busy seasons staff and interns from the NMFS lab in Santa Cruz work up there, too, so the little hatchery building gets quite crowded. We were fortunate to get to see pretty much all the steps involved in trying to return an endangered species from the brink of extinction.

Male salmon, called bucks, are held in pens outdoors. They can contribute more than one sperm donation in a season, just as in the wild a male can fertilize the eggs of more than one female. A buck is taken from the pen, sedated, and then is milted for his sperm. The milt is collected into a glass test-tube and kept dry; once the sperm make contact with fresh water they become activated, and there is a 30-second window during which they can fertilize eggs. Sperm can also be damaged by exposure to UV radiation, so the test tubes are always held in a closed hand. Back inside the hatchery building Erick takes a look at the sperm under a microscope to make sure they can swim properly.

Female salmon are called hens. Before eggs are taken the hens are anaesthetized and examined by palpation and ultrasound to confirm that their eggs are mature. A sample of ovarian fluid is taken and sent off to be tested for disease. When a hen passes the ripeness test she is sliced open to release her eggs into four metal basins.

Collecting a sample of ovarian fluid from a ripe coho hen. 19 February 2016 © Allison J. Gong
Collecting a sample of ovarian fluid from a ripe coho hen.
19 February 2016
© Allison J. Gong

A single female's eggs are fertilized by the sperm of four males. The fisheries biologists keep a detailed matrix of who mates with whom, so that they can avoid additional inbreeding in a population of fish that has already undergone a genetic bottleneck. Milt that has been collected from broodstock males is placed over the eggs. Fertilization occurs once fresh water is added to the basin. The egg-sperm combination is swirled ("just like panning for gold," Erick explained) for two minutes, then the eggs are rinsed and disinfected before being placed into a 100% humidity cold incubator held at 11°C.

The eggs remain in the incubator until the embryos have developed eyes. Then they are transferred into trays through which water flows. When they've absorbed most of their yolk sac they get placed into large indoor trays where they will be fed until they are big enough to go into the outdoor tanks. They'll spend about a year in the outdoor tanks and should then be ready to undergo the process of smoltification, during which their physiology undergoes the alterations necessary for the transition to marine life.

Erick explains hatchery operations, standing next to one of the outdoor pens where smolts are held. 19 February 2016 © Allison J. Gong
Erick explains hatchery operations, standing next to one of the outdoor pens where smolts are held.
19 February 2016
© Allison J. Gong

When I took last year's class to the hatchery we didn't get to see much activity because there were so few fish returning due to the prolonged drought and low water in the creek. This year's El Niño, which has brought rain, has also made it possible for the fish to get into the creeks. Coho are a 3-year species, so the fish returning this year were born in 2013. These fish outmigrated as smolts into drought conditions, and fortunately for them they return during a rainy year. Their progeny will outmigrate in 2017, hopefully into a strong upwelling which will produce lots of food. And when they return in 3-4 years, I hope that there is enough rain for their creek to flow.

%d bloggers like this: