Skip to content

For several centuries now, Earth's only natural satellite has been associated with odd or unusual behavior. Lunatics were people we would describe today as mentally ill, who behaved in ways that couldn't be predicted and might be dangerous. The erratic behaviors were attributed to the vague condition of lunacy. These words are derived from the Latin luna, which means 'moon'. The cycles of the moon have long been thought to influence human behavior as well; hence such legends as the werewolf.

We do know that the moon indeed has a very strong influence on aspects of many organisms, primarily through the tides. For example, reproduction in many marine animals is timed to coincide with a particular point in the tidal cycle. Grunion (Leuresthes tenuis, small, silver, finger-shaped fishes) run themselves up onto California beaches at night to spawn following the full and new moon high tides in the early summer months. Corals in the Great Barrier Reef spawn together in the handful of nights after the full moon in November. Animals such as these, which reproduce via broadcast spawning, are the ones most likely to benefit from synchronized spawning; after all, there is no point in spawning if you're the only one doing it. Invertebrates don't have watches or calendars; they keep time by sensing the natural cycles of sun and moon. The moon's strong effect on the tides is a signal that all marine creatures can sense and use to coordinate spawning, increasing the probability of successful fertilization for all.

Last night, Wednesday 6 September 2017, the moon was full. Yesterday at the lab, I noticed that  the large Anthopleura sola anemones living in the corner of my table had spawned.

A male Anthopleura sola anemone that had spawned
6 September 2017
© Allison J. Gong

That diffuse grayish stuff in the right-hand side of the photo is a pile of sperm. I looked at a sample under the microscope, just to be sure. By this time they had been sitting at the bottom of the table for several hours and most of them were dead. But they were definitely sperm:

Whenever I see something unusual like this my first impulse is to see if it's happening anywhere else at the lab. So I started poking around. The aquarists at the Seymour Center told me that some of their big anemones had spawned in the past couple of days; however, since they clean and vacuum the tanks every day all evidence was long gone.

Fortunately there are several A. sola anemones in other labs that aren't cleaned as regularly as the public viewing areas. One of the animals in the lab next door to where I have my table had also spawned. . .

Female Anthopleura sola
6 September 2017
© Allison J. Gong

. . . and this one is a female! What looks like a pile of fine dust is actually a pile of eggs.

Eggs of Anthopleura sola
6 September 2017
© Allison J. Gong

And the eggs are really cool. See those spines? They are called cytospines and apparently deter predation. Other species in the genus Anthopleura (A. elegantissima and A. xanthogrammica) are known to have spiny eggs, so it appears that this is a shared feature. Now, if only I could get my hands on eggs of the fourth congeneric species--A. artemisia, the moonglow anemone--that occurs in our area, I'd know for certain, at least for California species. I examined the eggs under higher magnification, but due to their opacity I couldn't tell if the had been fertilized. Most appeared to be solid single undivided cells; they could, however, be multicellular embryos.

All told, of the anemones that had obviously spawned, 1 was female and 4 were male. I sucked up some of the eggs and put them in a beaker of filtered seawater. I doubt that anything will happen, but I may be in for a pleasant surprise when I check on them tomorrow.

Last week I went up to Davenport to do some collecting in the intertidal. The tide was low enough to allow access to a particular area with two pools where I have had luck in the past finding hydroids and other cool stuff. These pools are great because they are shallow and surrounded by flat-ish rocks, so I can lie down on my stomach and really get close to where the action is. At this time of year the algae and surfgrasses are starting to regrow; the surface of the pools was covered by leaves of Phyllospadix torreyi, the narrow-leafed surfgrass.

Parting the curtain of Phyllospadix leaves to gaze into the first pool I was pleasantly surprised to find this. What does it look like to you?

Aglaophenia latirostris at Davenport Landing
8 March 2017
© Allison J. Gong

There are actually two very different organisms acting as main subjects in this photo. The pink stuff is a coralline alga, a type of red alga that secretes CaCO3 in its cell walls. Coralline algae come in two different forms: one is a crust that grows over surfaces and the other, like this, grows upright and branching. Because they sequester CaCO3, corallines are likely to be affected by the projected increase of the ocean's acidity due to the continued burning of fossil fuels. Ocean acidification is one of the sexy issues in science these days, and although it is very interesting and pertinent to today's world it is not the topic for this post. Suffice it to say that changes in ocean chemistry are making it more difficult for any organisms to precipitate CaCO3 out of seawater to build things like shells or calcified cell walls.

It's the tannish featherlike stuff in the photo that I was particularly interested in. At first glance the tan thing looks like a clump of a very fine, fernlike plant. It is, however, an animal. To be more specific, it is a type of colonial cnidarian called a hydroid. I love hydroids for their hidden beauty, not always visible to the naked eye, and the fact that at first glance they so closely resemble plants. In fact, many hydroid colonies grow in ways very similar to those of plants, which has often made me think that in some cases the differences between plants and animals aren't as great as you might assume. But that's a matter for a separate essay.

I collected this piece of hydroid and brought it back to the lab. The next day I took some photos. To give you an idea of how big the colony is, the finger bowl is about 12 cm in diameter and the longest of these fronds is about 3 cm long.

Colony of the hydroid Aglaophenia latirostris
9 March 2017
© Allison J. Gong

And here's a closer view through the dissecting scope.

The colonial hydroid Aglaophenia latirorostris
9 March 2017
© Allison J. Gong

Each of the fronds has a structure that we describe as pinnate, or featherlike--consisting of a central rachis with smaller branches on each side. This level of complexity can be seen with the naked eye. Zooming in under the scope brings into view more of the intricacy of this body plan:

Close-up view of a single frond of Aglaophenia latirostris, showing feeding polyps and two gonangia
9 March 2017
© Allison J. Gong

At this level of magnification you can see the anatomical details that cause us to describe this animal's structure as modular. In this context the term 'modular' refers to a body that is constructed of potentially independent units. A colony like this is built of several different types of modules called zooids, some of which are familiarly referred to as polyps. Each zooid has a specific job and is specialized for that job; for example, gastrozooids are the feeders, while gonozooids take care of the sexual reproduction of the colony. In this colony of Aglaophenia each of these side branches consists of several stacked gastrozooids, which you can see as the very small polyps bearing typical cnidarian feeding tentacles. Aglaophenia is a thecate hydroid; this means that each gastrozooid sits inside a tiny cup, called a theca, into which it can withdraw for protection. Those larger structures with pinkish blobs inside are called gonangia. A gonangium is a modified gonozooid, found in only thecate hydroid colonies, that contains either medusa buds or other reproductive structures called gonophores.

Pretty complicated, isn't it? Who would expect such a small animal to have this much anatomical complexity?


In the second pool I found an entirely different type of hydroid. At first glance this one looks more animal-like than Aglaophenia does, although it is still a strange kind of animal. This is Sarsia, one of the athecate hydroids whose gastrozooids do not have a protective theca. It might be easier to think of these and other athecate hydroids (such as Ectopleura, which I wrote about here and here) as naked, with the polyps not having anywhere to hide.

Colony of the athecate hydroid Sarsia sp.
9 March 2017
© Allison J. Gong

Each of these polyps is about 1 cm tall. The mouth is located on the very end of the stalk. The tentacles, not quite conforming to the general rule of cnidarian polyp morphology, do not form a ring around the mouth. Instead, they are scattered over the end of the stalk.

Here's a closer view:

Colony of the athecate hydroid Sarsia sp.
9 March 2017
© Allison J. Gong

In the hydroid version of Sarsia, the reproductive gonozooids are reduced to small buds that contain medusae. You can see a few round pink blobs in the lower right of the colony above; those are the medusa buds.  The medusae are fairly common in the local plankton, indicating that the hydroid stage is likewise abundant. Here's a picture of a Sarsia medusa that I found in a plankton tow in May 2015.

Medusa of the genus Sarsia
1 May 2015
© Allison J. Gong

The medusa of Sarsia is about 1 mm in diameter and has four tentacles, which usually get retracted when the animal is dragged into a plankton net. Sometimes, if the medusa isn't too beat up, it will relax and start swimming. I recorded some swimming behavior in a little medusa that I put into a small drop of water on a depression slide. It refused to let its tentacles down but you might be able to distinguish four tentacle bulbs.

There's a lot more that I could say about hydroids and other cnidarians. They really are among the most intriguing animals I've had the pleasure to observe, both in the field and in the lab. I've always been fascinated by their biphasic life cycle, with its implications for the animals' evolutionary past and ecological present. Perhaps I'll write about that some time, too.

1

A long time ago in a galaxy called the Milky Way, a great adventure took place. We don't know exactly when it happened, but it must have been very shortly after the evolution of the first cells. Some small prokaryotic cell walled itself off from its surroundings. Then it learned how to replicate itself and as cells continued to divide they began interacting with clones of themselves. Sooner or later, however, our clone of cells encountered cells from a different genetic lineage. These foreign cells were "other" and were recognized as such because they had a different set of markers on their outer covering. Perhaps there was an antagonistic interaction between the two clones of cells. In any case, this ability to distinguish between "self" and "non-self" was a crucial step in the evolution of life on Planet Earth.

The entire immune system in vertebrates is based on self/non-self recognition. It is why, for example, transplanted organs can be rejected by their new host--the host's immune system detects the transplanted tissue as "non-self" and attacks it. As a result, patients who receive donor organs usually take immune-suppressing drugs for some period of time after the transplant.

The vertebrate immune system is quite complex and very interesting. It has two main components: (1) cell-mediated immunity, in which the major players are T cells; and (2) humoral (i.e. blood-based) immunity, which is the part of the immune system that produces antibodies to a pathogen when you get a vaccination. However, even animals much less structurally complex than vertebrates have some ability to recognize self from non-self.

Sponges, for example, exist as aggregations of cells rather than bodies with discrete tissues and organs. Most zoologists, myself included, consider sponges to be among the most ancient animal forms. They have different types of cells, many of which retain the ability to move around the body and change from one type to another; this totipotency is a feature that sponge cells share with the stem cells of vertebrates. There are sponges that you can push through a mesh and disarticulate into individual cells, and then watch as the cells re-aggregate into an intact, functioning body. As if that weren't cool enough, if you take two different sponges and mush them into a common slurry, the cells from the distinct lineages re-aggregate with cells to which they are genetically identical. So even animals as primitive as sponges have some degree of self/non-self recognition.

If you're lucky, you can see self/non-self recognition and aggression in the intertidal. Here in northern California we have four species of sea anemones in the genus Anthopleura:

  • Anthopleura xanthogrammica, the giant green anemone
  • Anthopleura sola, the sunburst anemone
  • Anthopleura elegantissima, the aggregating anemone
  • Anthopleura artemisia, the moonglow anemone (and my favorite)

Of these species, only A. elegantissima clones. It does so by binary fission, which means that the animals rip themselves in half.

Sea anemone (Anthopleura elegantissima) undergoing binary fission in a tidepool at Davenport Landing. 9 April 2016 © Allison J. Gong
Sea anemone (Anthopleura elegantissima) undergoing binary fission in a tidepool at Davenport Landing.
9 April 2016
© Allison J. Gong

It looks painful, doesn't it? As the two halves of the animal walk in opposite directions they pull apart until the tissue joining them stretches and eventually rips. Then each half heals the wound and carries on as if nothing had happened. Each anemone is now a physiologically and ecologically independent animal, and can go on to divide itself. And so on ad infinitum. The logical consequence of all this replication is a clone of genetically identical anemones spreading over a rocky surface. And that's exactly what you get:

Clones of the sea anemone Anthopleura elegantissima, emersed on a rock at Monastery Beach. 27 November 2015 © Allison J. Gong
Clones of the sea anemone Anthopleura elegantissima, emersed on a rock at Monastery Beach.
27 November 2015
© Allison J. Gong

Okay, it's hard to tell that these are sea anemones, but this is what they look like when the tide goes out and leaves them emersed. They pull in their tentacles, close off the oral disc, and cover themselves with sand grains. They look like sand but feel squishy and will squirt water if you step on them. In this photo, each anemone is probably 4-5 cm in diameter.

There are three patches of anemones in the photo above, separated by narrow strips of real estate where there are no anemones. Each patch is a clone, essentially a single genotype divided amongst many individual bodies. The anemones in each clone pack tightly together because they are all "self." However, they recognize the anemones of an adjacent patch as "non-self" and they won't tolerate the intrusion of neighbors onto their territory. Those strips of unoccupied (by anemones) rock are demilitarized zones. When the rock is submerged the anemones along the edges of the clones reach out their tentacles and sting their non-self neighbors. This mutual aggression maintains the DMZ and nobody gets to live there.

Because A. elegantissima lives relatively high in the intertidal the clonal patches are usually emersed when I go out to the tidepools. Its congener, A. sola, lives lower in the intertidal and is more often immersed at low tide. Anthopleura sola is larger than A. elegantissima and is aclonal, meaning that it does not divide. Anthopleura sola also displays quite dramatically what happens when anemones fight.

These two anemones, each about 12 cm in diameter, were living side-by-side in a tidepool. You can see that each animal has two kinds of tentacles: (1) the normal filiform feeding tentacles surrounding the oral disc; and (2) thicker, whitish club-shaped tentacles below the ring of feeding tentacles. These club-shaped tentacles are called acrorhagi, and are used only for fighting. The acrorhagi and the feeding tentacles may contain different types of stinging cells, reflecting their different functions. All tentacles are definitely not the same.

Anthopleura sola anemones fighting in a tidepool at Davenport Landing. 8 May 2016 © Allison J. Gong
Anthopleura sola anemones fighting in a tidepool at Davenport Landing.
8 May 2016
© Allison J. Gong

These animals, which represent different genotypes, are non-self to each other, so they fight. They inflate their acrorhagi, move their feeding tentacles out of the way, and reach across to sting each other. See how some of the acrorhagi on the animal on the right don't have nice smooth tips? Those tips have been lost during battle with the animal on the left; the tips are torn off and remain behind to continue stinging the offender even after the tentacle itself has been withdrawn.

Here's another picture of the same two anemones, taken from a different angle:

Anthopleura sola anemones fighting in a tidepool at Davenport Landing. 8 May 2016 © Allison J. Gong
Anthopleura sola anemones fighting in a tidepool at Davenport Landing.
8 May 2016
© Allison J. Gong

The goal of these fights is not to kill, but to drive the other away so that each anemone has its own space. Eventually one of them will retreat, and a more peaceful coexistence will be established. Fights like these have been going on for over half a billion years. Eat your heart out, George Lucas.

This morning I went out on the first morning low tide of the season. I was so excited to have the morning lows back that I got to the site early and had to wait for the sun to come up. Awesome thing #1 about early morning low tides: Having the intertidal to myself.

Dawn over Davenport Landing. 9 April 2016 © Allison J. Gong
Dawn over Davenport Landing.
9 April 2016
© Allison J. Gong

The purpose for the trip was to collect some algae for a talk I'm preparing; I'll be speaking to the docents at Natural Bridges State Beach at their monthly meeting this coming Wednesday. They invited me to talk to them about algae. I already have a lecture on algae prepared, but last year I set the bar pretty high with this particular audience and want do something a little different. So I'll talk to them for a bit, show them some of my pressings, and invite them to press a couple of specimens. This morning I collected a few pieces of algae and took a bunch of pictures.

The Anthopleura anemones continue to fascinate me. At Davenport Landing there's an area where the rock has eroded and forms a sort of channel. In this channel at low tide the water comes about up to my knees. The rock in the channel remains clear of algae but sometimes contains sand. Scattered over the bottom of this channel are several A. artemisia anemones, which can burrow into the sand when it is present. I've photographed these animals many times, as they are magnificently photogenic and in deep enough water that I can just stick my camera below the surface and click away.

This morning the first anemone I looked at in this channel had some orange gunk on its oral surface. At first I thought it had latched onto a piece of bleached algae, but then noticed that others had the same thing. My second thought was, "Ooh, eggs!" If I were at the lab I'd have sucked up some of the gunk and examined it under the microscope.

Spawning female Anthopleura artemisia at Davenport Landing. 9 April 2016 © Allison J. Gong
Spawning female Anthopleura artemisia at Davenport Landing.
9 April 2016
© Allison J. Gong

Usually when animals spawn the gametes are quickly dispersed by water currents. But this channel is high enough that at low tide it doesn't exchange water with the ocean so there are no currents except those generated by the wind. Awesome thing #2 about early morning low tides: No wind. Once I used the camera as a sort of underwater microscope I could see the granular texture of the orange gunk, which told me that these were, indeed, eggs. Cool! Because I was on a hunt for algae I didn't spend a lot of time censusing these anemones, but I figured that statistically speaking they couldn't all be females. And sure enough, after a very short search I found some males.

Spawning male A. artemisia at Davenport Landing. 9 April 2016 © Allison J. Gong
Spawning male A. artemisia at Davenport Landing.
9 April 2016
© Allison J. Gong
Spawning male A. artemisia at Davenport Landing. 9 April 2016 © Allison J. Gong
Spawning male A. artemisia at Davenport Landing.
9 April 2016
© Allison J. Gong

So today I learned that April is when the A. artemisia anemones have sex. Makes sense, as spring is the time of year when many organisms (algae and invertebrates) in the intertidal reproduce. Reproduce sexually, that is.

Some animals reproduce clonally as well as sexually, and while sexual reproduction tends to be seasonal, clonal reproduction doesn't seem to be. Along the coast of central/northern California we have four species of anemones in the genus Anthopleura:

  • A. artemisia, the moonglow anemone (see above)
  • A. elegantissima, the aggregating anemone
  • A. sola, the sunburst anemone
  • A. xanthogrammica, the giant green anemone

Of these four species, only A. elegantissima clones readily. It does this by ripping its body in half in a process called binary fission. The two halves of the animal pull away from each other and the tissue between them gets stretched thinner and thinner until it rips. Then each former-half heals the wound and gets on with life, completely independent of the other. It sounds rather awful but is a very effective way to form clones of genetically identical units that can monopolize large areas in the intertidal.

Anemone (Anthopleura elegantissima) undergoing binary fission, at Davenport Landing. 9 April 2016 © Allison J. Gong
Anemone (Anthopleura elegantissima) undergoing binary fission, at Davenport Landing.
9 April 2016
© Allison J. Gong

It'll probably take this anemone another day or two to completely tear itself into two pieces. Anemones can continue to clone like this, with each individual splitting into a pair of individuals, for a long time. Eventually this process can form large clones. More about the ecology of these clones in a separate post some time.

While much of America was glued to the television watching a football game, I went out to the intertidal at Davenport Landing to do some collecting and escape from Super Bowl mania. The Seymour Center and I have a standing agreement that some animals--small hermit crabs and certain turban snails, for example--are always welcome, which gave me an excuse to look for them. I also needed to pick up some algae for labs that I'm teaching later this week, so it was an easy decision to be alone in nature for a couple of hours.

As usual, I was easily distracted by the animals, especially the anemones. They are simply the most photogenic animals in the rocky intertidal. And we have an abundance of beautiful anemones in our region; I feel very lucky to photograph them where they live. I would like to share them with you.

First up, Anthopleura sola:

Anthopleura sola 7 February 2016 © Allison J. Gong
Anthopleura sola specimen #1
7 February 2016
© Allison J. Gong
Anthopleura sola 7 February 2016 © Allison J. Gong
Anthopleura sola specimen #2
7 February 2016
© Allison J. Gong

Second species, Anthopleura xanthogrammica:

Anthopleura xanthogrammica 7 February 2016 © Allison J. Gong
Anthopleura xanthogrammica
7 February 2016
© Allison J. Gong
One large and one small Anthopleura xanthogrammica 7 February 2016 © Allison J. Gong
One large and one small Anthopleura xanthogrammica
7 February 2016
© Allison J. Gong

Along the central California coast we have four species of anemones in the genus Anthopleura. Two of them, A. xanthogrammica and A. sola, are large and solitary; in other words, they do not clone. The geographic ranges of these two species overlap in central California. Anthopleura xanthogrammica has a more northern distribution, from Alaska down to southern California, while A. sola typically lives from central California into Mexico.

I've seen these congeneric anemones living side-by-side in tidepools at Natural Bridges and at Davenport. Here is a photograph from yesterday. The animals are almost exactly the same size, and are separated by about 30 cm. Can you tell which is which?

So, which is which? 7 February 2016 © Allison J. Gong
So, which is which?
7 February 2016
© Allison J. Gong

The pièce de résistance yesterday was a treasure trove of Anthopleura artemisia anemones. I'd seen and photographed them several times before, and always appreciated the variety of colors they come in. For some reason, though, yesterday they really caught my eye. I had a number of "Wow!" moments.

Anthopleura artemisia specimen #1. 7 February 2016 © Allison J. Gong
Anthopleura artemisia specimen #1.
7 February 2016
© Allison J. Gong
Anthopleura artemisia specimen #2 7 February 2016 © Allison J. Gong
Anthopleura artemisia specimen #2
7 February 2016
© Allison J. Gong
Anthopleura artemisia specimen #3 7 February 2016 © Allison J. Gong
Anthopleura artemisia specimen #3
7 February 2016
© Allison J. Gong

Sometimes two colors are combined:

Anthopleura artemisia specimen #4 7 February 2016 © Allison J. Gong
Anthopleura artemisia specimen #4
7 February 2016
© Allison J. Gong

Stunning, isn't it?

But this next anemone is unlike any I've ever seen before. Get a load of this:

Anthopleura artemisia specimen #5 7 February 2016 © Allison J. Gong
Anthopleura artemisia specimen #5
7 February 2016
© Allison J. Gong

These stark white tentacles are new to me. The anemone measured about 4 cm across. In every other aspect it looks like A. artemisia, and I'm almost entirely certain that's what it is. It does feel special to me. I will hopefully be able to keep an eye on this individual and see if its colorless tentacles are a temporary or long-term condition. And now that my eye has been primed to see the colors that A. artemisia comes in, I may notice more unusual color morphs.

%d bloggers like this: