Skip to content

How does a group of people go about trying to save a federally endangered species? The answer, of course, depends on the species. However, you can bet your bottom dollar that it takes a tremendous effort over many years by many dedicated and talented people, all of whom know that in the end their work may not succeed. Ultimately it is society who decides whether or not such efforts, costly in both person hours and dollars, are worthwhile. After all, we are the people who vote elect the legislators to decide how our tax monies are spent. Not only that, but which of the many endangered species should we try to save? Can we save them all? Should we try to anyway? If not, then how do we decide which species are worth the effort? And what should we do about the species that are deemed unworthy?

Erick (green jacket) gives my students an introduction to the weir on Scott Creek
9 March 2018
© Allison J. Gong

Today I took my Ecology students to locations on Scott Creek and Big Creek in northern Santa Cruz County, where biologists are working on saving the coho salmon, Onchorhynchus kisutch. Our guide for the day was Erick, a fisheries biologist with the National Marine Fisheries Service (NMFS), a division of the National Oceanographic and Atmospheric Administration (NOAA). Erick's job is to maintain the genetic diversity of this population, which occupies the southernmost part of the coho's range in North America. The coho is a federally endangered species in California, and this southern population represents the species' best chance for surviving and adapting to the ocean and river conditions that are predicted due to climate change.

Erick explaining how the fish trap works
9 March 2018
© Allison J. Gong

Our first stop was at the weir and fish trap on Scott Creek. There are actually two fish traps in this location: one to catch adult salmon swimming upstream and one to catch smolts migrating downstream (more about that in a bit). Adult salmon returning to spawn come into the trap and end up in the box to Erick's right. Every day during the spawning season at least two people come down to the weir to count, measure, sex, and weigh each fish in the trap. Then the salmon are trucked up to the hatchery, where they will be used for spawning under controlled conditions. The stretch of creek behind Erick is located between the fish traps; there are no salmon in it because the adults are all captured by the large trap, and the outgoing smolts are caught in the upstream trap.

Upstream end of the smolt trap on Scott Creek
9 March 2018
© Allison J. Gong

At this point the entire creek passes through those screened panels, and the fish are directed into this box:

Smolt trap on Scott Creek
9 March 2018
© Allison J. Gong

The smolts are netted out, put into buckets, and carried downstream past the adult fish trap. From there they migrate out to the ocean, and if all goes well they will spend the next two years feeding and growing before they return to the creek as adults.

Adult coho salmon caught in the trap are trucked up to the hatchery, which is located on Big Creek. There has been a hatchery on this site since the early 1940s. The current installation is operated by the Monterey Salmon and Trout Project, with permission of the landowners and from the state. Erick and his fellow fisheries biologists are charged with maintaining the genetic diversity within this small population of fish. They do so by keeping track of who mates with whom and making sure that closely related individuals do not mate. Each female salmon's eggs are divided into separate batches to be fertilized with as many as four males. Each male's sperm can be used to fertilize up to four females' eggs.

Fertilized eggs are incubated in a chamber set at 11°C and 100% humidity; in other words, they are not incubated in water. Once they hatch they are transferred to trays of water, where they remain until they have used up their entire yolk sac and need to be fed. Each of these trays contains one family of fry; in other words, all of the babies from one female-male mating.

Erick shows us trays containing salmon fry
9 March 2018
© Allison J. Gong

From these trays the fishlets move into indoor tanks and then outdoor tanks. They are fed, and this is when they develop one of the bad habits of all hatchery fish: they get used to food coming from above and drifting down. In the wild, a juvenile salmon in a stream feeds on aquatic insects, small crustaceans, and the like. Many of their favored prey items are benthic, but they will also feed on insects at the surface. To do so, they have to spend time going up and down in the water column, when they are at risk of being eaten themselves. Hatchery-reared juveniles don't have predators to deal with and have learned that food lands on the surface of the water. They don't understand the need to remain hidden, and many of them get picked off by birds and other fish.

As a safeguard against an extremely poor return of spawning adults, each year some portion of the juveniles are kept at the hatchery and grown to adulthood on-site. This means that even if very few fish return to the river, or if there aren't enough females, the captive breeders can be used to make up the difference. This year, the 2017-2018 spawning season has so far been successful. As a result there were adult salmon that, for whatever reason, were not used as breeders. Today just happened to be the day that they would be returned to the creeks, where they may go ahead and spawn, and we got to watch part of it.

Returning to the story of the outmigrating juveniles, one of their biggest challenges is smoltification (my new favorite word), the process of altering their physiology in response to increasing salinity as they move towards the ocean. This is a unidirectional change in physiology for salmon; once they have fully acclimated to life in the ocean they cannot re-acclimate to the freshwater stream where they were born. Smoltification takes place over a few to several days. The hatchery has several year-old fish ready to smoltify (I think that's the verb form of the word) and will be releasing them in several batches at approximately two-week intervals starting later in March. The outgoing fish are tagged so that when they return in two years the hatchery staff will be able to determine which batch they came from, helping them understand what release conditions resulted in the greatest survival and return of adults. Kinda cool, isn't it?

The bad news is that as of right now any baby fish released into the creek won't be able to get to the ocean. We haven't had enough rain recently to break through the sand bar that develops on the beach where Scott Creek runs into the sea.

Scott Creek Beach
9 March 2018
© Allison J. Gong

It will take some decent rainfall to generate enough runoff to breach the sand bar. A good strong spring tide series would help, if it coincides with a big runoff event. We are supposed to get some rain this weekend and into early next week. I hope it's enough to open the door to the ocean for the smolts. In the meantime, they will hang out on the other side of the highway in the marsh.

Scott Creek just upstream of where it crosses under Highway 1
9 March 2018
© Allison J. Gong

They'll have to wait until the ocean becomes available to them, and in the meantime will be vulnerable to predators, especially piscivorous birds. Hopefully the rains in the near forecast will be heavy enough to open up the sand bar and the smolts will be able to continue their journey out to sea. Good luck, little guys!

This week I took my Ecology students to the Younger Lagoon Reserve (YLR) on the UC Santa Cruz Coastal Science Campus. The YLR is one of 39 natural reserves in all of the major ecosystems throughout the state of California. The UCSC campus administers five of the reserves: Younger Lagoon, the Campus Reserve, Fort Ord Natural Reserve, Año Nuevo (operated in conjunction with the California State Park system), and the Big Creek Natural Reserve in Big Sur. The UC reserves are lands that have been set aside to use as living laboratories and outdoor classrooms, and are fantastic places to take students to learn about the natural history of California. They provide students with opportunities to gain valuable hands-on experience working in the field, through classes, internships, or volunteering.

Younger Lagoon
23 February 2018
© Allison J. Gong

The Younger Lagoon Reserve comprises about 70 acres of land, most of which was formerly brussels sprouts fields. The lagoon itself is a Y-shaped body of brackish water that receives input from run-off due to rain. It connects with the water of Monterey Bay only when there is enough freshwater flowing to break through the thick sand berm; this happens once or twice a year during the rainy season. The Lagoon lands were donated to UCSC in the 1970s. East of  the actual lagoon are about 47 acres of what are referred to as Terrace Lands, which were incorporated into the YLR in 2009. This is where, for the past three years, I've brought students to work on vegetation restoration. The team of reserve stewards, interns, and volunteers has a yearly goal to replant two acres every year.

Restoration of native vegetation at the Younger Lagoon Reserve
23 February 2018
© Allison J. Gong

This year, instead of getting straight to the planting, we began the morning at the bird banding station. Personnel at the YLR have been banding birds for a little over a year now, usually on Fridays and occasionally on Thursdays. The banders, or "bird nerds", get started at about 07:30, and by the time our class arrived at 09:30 they had caught five birds. It was windy and there was no cloud cover at all, which were not very good conditions for catching birds in either the mist nets or the ground traps.

Rachel explains how a mist net catches flying songbirds
23 February 2018
© Allison J. Gong
This trap catches birds that forage on the ground
23 February 2018
© Allison J. Gong

Notice how both the mist net and the ground trap are empty? That's the kind of luck we had with the bird banding.

The rest of the morning was very productive. After the bird banding demonstration we joined the UCSC student interns on the Terrace Lands for some planting. The method used for planting has changed since the last time I was here with students in 2016, due to a 5-year study comparing weed control methods. Herbicide was very effective, but obviously toxic to the native plants as well as the weeds. The stewards also tried laying black plastic over the fields and letting the sun bake the weeds to death. This was almost as effective as herbicide; however, the plastic can be used only a few times and then has to be thrown away to end up in the landfill. The result of the study was a compromise between effective weed control and minimal negative environmental impact. The planters now put down a layer of biodegradable paper and cover it with mulch. Holes are punched through the paper and small plants are planted in the holes. The combination of the paper and mulch seems to work pretty well. Plus, there's no waste!

Rolling out the weed barrier
23 February 2018
© Allison J. Gong

A large group of about 25 motivated workers can accomplish quite a lot in a few hours. By lunchtime we had lain three long strips of the paper side-by-side, covered them with mulch, and repeated the process twice more, using up the entire roll of paper. The hole-punching and planting go more slowly, but we did place ~200 plants in the ground. It was a busy and productive morning, despite the lack of birds. The students said they learned a lot and had fun doing it. That's the beauty of field trips!

This week's field trip for my Ecology class was the first of two visits to the Santa Cruz harbor. The students' task was to select a site to monitor for a semester-long study of ecological succession. The floating docks at the harbor are the ideal site for this kind of study because I know from experience that the biota changes from season to season throughout the year, on a time scale that can be observed within the confines of a 16-week semester. We will return to the harbor in nine weeks and students will document how their sites have changed in that time.

California is swinging back into the severe drought situation we had before the epic 2016-2017 rainy season. Since the current rainy season began on 1 October 2017, we've had hardly any rain at all and very little snow in the Sierra. Fools who thought that one rainy season would get us out of drought are just that--fools. However, one nice thing about drought conditions is that visibility at the harbor is pretty good. Without any significant runoff the water is nice and clear, making it easy for the students to see what's growing on their section of the docks.

Students examining their study plot
9 February 2018
© Allison J. Gong
Sometimes a little ballast is required!
9 February 2018
© Allison J. Gong

The assignment for this first visit to the harbor was to choose a site, identify what lives on the site, and draw a map of it. I had warned them that all the interesting biology on the docks occurs below the level of their feet, and that they would have to lie or kneel on the dock to get a good look at what's going on down there. Some of them tried to take a photo of the entire site, but it's impossible to get far enough away. Unless you're actually in the water, from where it would be easy. Yeah, you could don a wetsuit and get in the water, but the harbor isn't the most ideal place to go for a morning swim.

A little back story on the docks at the Santa Cruz harbor

Remember the magnitude 9.0 earthquake and subsequent tsunami that occurred in northern Japan several years ago? That was on 11 March 2011 at 14:46 local time. That morning in Santa Cruz we received a tsunami warning. I didn't venture down to the harbor (I think I was working at the marine lab that day) but here's a video shot by a woman who watched the ~0.5 meter tsunami tear through the upper harbor:

Amazing, the destructive power of such a small wave, isn't it? Boats were wrenched from their moorings and slammed into other boats and harbor infrastructure. I forget the total dollar amount of damage that our harbor sustained, but as a result all of the docks were replaced in the next few years. I did happen to be at the harbor with a group of students on one of the days that the old docks were being removed. It was heartbreaking to see the docks, carrying decades of biological growth on them, dumped in the parking lot to dry out in the afternoon sun. I imagine they were eventually hauled out to the landfill. 

Since then, the biota on the new floating docks seems finally to be stabilizing. If I had been teaching Ecology back in 2013, we would have had pristine habitat in which to observe honest-to-goodness primary succession. As things are, however, I'm giving students the option of scraping all or part of their plot clear, to simulate primary succession. Their other option is to leave the plot as-is, and pick up the succession process somewhere in the middle and see what happens from this point forward.

So, what did they see down there? 

Well, even though the water was relatively clear, a lot of the photos looked like this:

9 February 2018
© Allison J. Gong

I can identify much of the stuff in this photo, but this isn't the best shot to showcase the biodiversity on the docks. I decided that the camera would do a better job if I used it to photograph individual organisms instead. Here are some of my favorites.

This shot is looking straight down along the edge of one of the docks. The macroscopic life begins 2-3 cm below the waterline, and even above that the dock surface is covered with microscopic scuzzes.

White plumose anemones (Metridium senile) at the Santa Cruz harbor
9 February 2018
© Allison J. Gong
Oral view of white plumose anemones (Metridium senile) at the Santa Cruz harbor
9 February 2018
© Allison J. Gong

I had shown the students pictures of organisms they would be likely to see at the harbor. One of the critters that shows up sporadically is the introduced hydroid Ectopleura crocea. Later in the semester we will discuss species introductions and invasions in more detail. Harbors generally tend to be heavily populated by non-native species, and our local harbor is no exception. The species of Ectopleura found in harbors has hydranths that can be 8-10 cm long, and when it occurs it tends to be quite conspicuous. The congeneric species, E. marina, lives in intertidal in some areas on the open coast; I've seen it in a few tidepools at Davenport Landing, for example. The intertidal species is much smaller, about 2-3 cm tall and doesn't form the dense clumps that typifies E. crocea.

The non-native hydroid, Ectopleura crocea, at the Santa Cruz harbor
9 February 2018
© Allison J. Gong
Caprellid amphipods at the Santa Cruz harbor
9 February 2018
© Allison J. Gong

The ubiquitous caprellid amphipods were crawling all over everything, as usual. Some of the students really didn't like these guys and one of them had the same reaction to them that I do, which is a general shudder. They're sort of cute in still photos, but when they start inchworming around they look sort of creepy. And when there's a bunch of them writhing around in an oozy mass, they're REALLY creepy.

 

 

 

One of the most conspicuous worms at the harbor is Eudistylia polymorphora, the so-called feather duster worm. They come in oranges, purples, and yellows. This one was pure white. Lovely animal!

Feather duster worm (Eudistylia polymorpha) at the Santa Cruz harbor
9 February 2018
© Allison J. Gong

Tube-dwelling polychaete worms, such as Eudistylia, don't have much in the way of a head but they do have many light-sensitive eyespots on the tentacles. They react very quickly to many stimuli, and even a shadow passing over a worm causes it to yank its tentacles into its tube in the blink of an eye. Usually they're not too shy, though, and will extend their tentacles soon to resume feeding.

All told we were on the docks for about 2.5 hours. Not a bad way to spend a glorious morning, is it?

9 February 2018
© Allison J. Gong

 

The intertidal portion of my participation in Snapshot Cal Coast 2017 is complete. I organized four Bioblitzes, two of which consisted of myself and Brenna and the other two for docents of the Seymour Marine Discovery Center (Tuesday) and the docents of Año Nuevo and Pigeon Point State Parks (Wednesday). The four consecutive days of early morning low tides have been exhausting for a concussed brain and a body dealing with bronchitis for the past several weeks. Good thing the low tide arrives 40-50 minutes later, or I'd probably be dead by now. And even so, I tried to take advantage of the later tides to venture a bit farther afield, so I still ended up getting up at the butt-crack of dawn.

But oh, so totally worth it!

Day 3: Davenport Landing with docents from the Seymour Marine Discovery Center, Tuesday 27 June 2017, low tide -1.1 ft at 08:03

Davenport Landing Beach is a sandy beach with rock outcrops and a fair amount of vertical terrain to the north, and a series of flat benches (similar to those at Natural Bridges) to the south. To get to the good spots at the north end you have to do some cliff scrambling, unless the tide is low enough that you can walk around the rock, which happens maybe once or twice a year. Because it's easier to get around on the benches to the south, that's where I took my group for the Bioblitz. The difference in topography also results in some differences in biota and distribution/abundance of organisms; overall biodiversity is probably equivalent at both sites, but certain species are more abundant at one site versus the other.

Intrepid citizen scientists at Davenport Landing
27 June 2017
© Allison J. Gong

The morning we went to Davenport was sunny and (almost) warm. This makes for plenty of light for photography, but also lots of glare of the surface of pools and the wet surfaces of organisms themselves. My most successful photos are the ones I took with the camera underwater. Wanting to improve my skills at identifying algae, I concentrated most of my efforts on them while not ignoring my beloved invertebrates.

Encrusting coralline algae on submerged rock
27 June 2017
© Allison J. Gong

Coralline algae are red algae whose cells are impregnated with CaCO3. This gives them a crunch texture that is unusual for algae. Corallines come in two forms, encrusting and upright, and can be one of the most abundant organisms in the high and mid intertidal. There are several species of both encrusting and upright corallines on our coast, and most of the time they aren't identifiable to species by the naked eye. Sometimes I can distinguish between genera for the upright branching species. However, the encrusting species require microscopic examination of cell size, crust thickness, and reproductive structures, none of which can be observed in the field.

Bullwhip kelp, Nereocystis luetkeana, at Davenport Landing.
27 June 2017
© Allison J. Gong

Some algae are so distinctive that a quick glance is all it takes to know exactly who they are. With its tiny holdfast, long elastic stipe, and single large pneumatocyst, bullwhip kelp doesn't look anything like the other kelps in California. Like most kelps, N. luetkeana lives mostly in the very low intertidal or subtidal, where under certain conditions it can be a canopy-forming kelp. About a month ago I noted a big recruitment of baby Nereocystis kelps in the intertidal on the north side of Davenport Landing Beach. I speculated then that they probably wouldn't persist into the summer. I'll have to take a morning soon to go up and check on them. Anyway, on our Tuesday Bioblitz we found this big N. luetkeana growing in the intertidal. The stipe was about 1.5 meters long and the pneumatocyst was a little smaller than my closed fist. Given that this individual recruited to that spot and has persisted for a few months, probably, it has a good chance of continuing to survive into the fall. Winter storms, especially if they're anything like the ones we had this past year, will most likely tear it off, though.

Coralline algae aren't the only pink things in tidepools. There are pink fish!

Sculpin in tidepool at Davenport Landing.
27 June 2017
© Allison J. Gong

Sculpins are notoriously difficult to ID if you don't have the animal in hand to count things like fin rays and spines. Someone on iNaturalist may be able to ID this fish, but I don't think the photo is very helpful.

And, just because they're my favorite photographic subjects in the intertidal, here's a shot of Anthopleura sola:

Anthopleura sola at Davenport Landing
27 June 2017
© Allison J. Gong

As of this writing, 10 participants in this Bioblitz have submitted 204 observations to iNaturalist, with 70 species identified. I know that some people haven't upload their observations yet, and expect more to come in the next couple of weeks. The docents enjoyed themselves, to the extent that two of them accompanied Brenna and me to our fourth Bioblitz at Pigeon Point.


Day 4: Whaler's Cove at Pigeon Point with rangers (and one docent) from Pigeon Point and Año Nuevo state parks, Wednesday 28 June 2017, low tide -0.6 ft at 08:53

Usually when I go to Pigeon Point I go to the north side of the point, either scrambling down the cliff next to the lighthouse or about half a mile north to Pistachio Beach. When the park rangers and I were organizing this Bioblitz they suggested going to Whaler's Cove, as the access is very easy due to a staircase and would be much easier for docents who aren't used to climbing down cliffs. It ended up being a good decision, as there was much to be seen.

Bioblitzes and iNaturalist are all about photographing individual organisms (as much as possible) so that they can be ID'd by experts in particular fields. This is the 'tree' level of observation I mentioned in my previous post. I find that when I'm taking photos with the intent to upload them to iNaturalist the photos themselves tend to be rather boring. The intertidal is such a dynamic and complex habitat that photos of single species tend to lack the visual interest of the real thing. I've learned that one of my favorite things to see is organisms living on other organisms.

See what I mean?

A nicely decorated mossy chiton, Mopalia muscosa, at Pigeon Point.
28 June 2017
© Allison J. Gong

Four of this chiton's eight shell plates are completely covered with encrusting coralline algae. It is also wearing some upright corallines and at least two other red algae, one of which is Mastocarpus papillatus. This photo produced six observations for iNaturalist.

Which is not to say that single-subject photos are always boring. When the subject is as weighty as this gumboot chiton (Cryptochiton stelleri), it deserves its own photo or two.

Cryptochiton stelleri at Pigeon Point
28 June 2017
© Allison J. Gong
Ventral view of Cryptochiton stelleri
28 June 2017
© Allison J. Gong

The largest chiton in the world, Cryptochiton typically lives in the subtidal or the very low intertidal. Unlike other chitons, it doesn't stick very firmly to the substrate. I was able to reach down and pick up this one with very little effort. In the subtidal this lack of suction isn't a handicap, as water movement there is less energetic compared to the intertidal, and Cryptochiton does quite well. But it doesn't really look like a chiton at all, does it? That's because its eight dorsal shell plates are covered by a thick, tough layer of skin called the mantle. In most chiton species the mantle is restricted to the lateral edges of the dorsal surface. The girdle, as it's called, exposes the shell plates to some degree. We don't see Cryptochiton's shell plates, but if you run your finger down the middle of the dorsum you can sort of feel them underneath the mantle.

Okay, now for some more 'forest' pictures.

Intertidal biota at Pigeon Point
28 June 2017
© Allison J. Gong

I love this one. There's a lot going on in this small area. The greenish-brown algae are actually a red alga, Mazzaella flaccida. There are two large clumps of stuff in the photo. The clump on the left, consisting of round lumps, is a clone of the aggregating anemone Anthopleura elegantissima. The other clump is a mass of tubes of the polychaete worm Phragmatopoma californica. These two clumps were formed in very different ways, reflecting the vastly different biology of the animals that made them.

Anthopleura elegantissima is one of four species of Anthopleura anemones we have in California and is the only one to grow by cloning. It does so via longitudinal fission, in which an anemone literally rips itself in half. I wrote about them last year. Note that in this aggregation, all of the anemones are about the same size. That's because they're all clones of each other and share the exact same genetic makeup.

Whereas a clone of A. elegantissima represents a single genotype formed by cloning, clumps of Phragmatopoma arise by gregarious settlement. Each of the tubes in a clump is occupied by a single worm, which recruited to that spot as a larva and settled down to live its life. When it comes time to look for a permanent home, the planktonic larvae of Phragmatopoma are attracted by the scent of adult conspecifics. The larvae settle on the tubes of existing adults and undergo metamorphosis. Each worm builds its tube as it grows, using some kind of miraculous cement that sticks sand grains together, much as a mason stacks bricks to build a wall. One of the remarkable things about this construction is that the cement is secreted by the animal's body and starts out sticky and then hardens, all in seawater. It's a likely candidate for Best Underwater Epoxy around. Interestingly, Phragmatopoma can build its tube only as a growing juvenile. Adult worms that are removed from their tubes do not build new ones, and soon die.

Here's another nice clump of Phragmatopoma:

Intertidal biota at Pigeon Point
28 June 2017
© Allison J. Gong
Whaler's Cove at Pigeon Point
28 June 2017
© Allison J. Gong

See that pile of rocks out there? That's where we were blitzing. Given the not-so-lowness of the tide I didn't know if we would be able to make it out there. We were lucky, though, and were able to spend ~30 minutes out on that little point.

So far, the Pigeon Point Bioblitz has yielded 204 observations for iNaturalist, with three participants (so far!) identifying 77 species. Several of my observations were of red algae that I did not recognize; hopefully an expert will come along to ID those for me. Snapshot Cal Coast 2017 continues through this weekend. My intertidal Bioblitzes are over, but I hope to contribute one last set of observations by collecting and examining plankton on Sunday.

Since 2000 the first Saturday in May is Snapshot Day in Santa Cruz. This is a big event where the Coastal Watershed Council trains groups of citizen scientists to collect water quality data on the streams and rivers that drain into the Monterey Bay National Marine Sanctuary, then sets them loose with a bucket of gear, maps, and data sheets. The result is a "snapshot" of the health of the watershed. As we did last year, my students and I were among the volunteers who got to go out yesterday and play in coastal streams. This year there were 13 (+1) groups sent out to monitor ~40 sites within Santa Cruz County. For reasons I don't entirely understand four sites in San Mateo County (the county to the north along the coast) were included in this year's sampling scheme; hence the +1 designation. Since I routinely haunt the intertidal in this region I took the opportunity to become more familiar with the upstream parts of the county and volunteered to sample at these northern sites. It just so happened that I was teamed with two of my students, Eve and Belle, for yesterday's activities.

Of our four sites, two were right on the beach and two were up in the mountains. Thus our "snapshots" covered both beach and redwood forest habitats. Here are Belle and Eve at our first site, Gazos Creek where it flows onto the beach:

Beel and Eve at Gazos Creek, our first site. 7 May 2016 © Allison J. Gong
Belle and Eve at Gazos Creek, our first site.
7 May 2016
© Allison J. Gong

After heavy rains the water draining through the watershed breaks through the sand bar and the creek flows into the ocean. Yesterday the sand bar was thick and impenetrable, at least to the measly amount of rain we'd had in the past 24 hours.

Gazos Creek as it flows onto the beach. After rains it breaks through the sand bar and flows into the ocean. 7 May 2016 © Allison J. Gong
Gazos Creek as it flows onto the beach. After rains it breaks through the sand bar and flows into the ocean.
7 May 2016
© Allison J. Gong

At each site we collected two water samples, for nutrient and bacteria analyses, and the following field measurements:

  • air and water temperature
  • electrical conductivity
  • pH
  • dissolved oxygen (DO)
  • water transparency
Snapshot Day data sheet for 7 May 2016 © Allison J. Gong
Snapshot Day data sheet for our Gazos Creek (forest) site.
7 May 2016
© Allison J. Gong

Here Eve is measuring conductivity in Gazos Creek (beach site):

Eve takes a conductivity measurement at Gazos Creek (beach site). 7 May 2016 © Allison J. Gong
Eve takes a conductivity measurement at Gazos Creek (beach site).
7 May 2016
© Allison J. Gong

Most of the equipment we used to take the field measurements was simple and straightforward: pH strips and a thermometer, for example. Even the conductivity meter was easy to use. You just turn it on, let the machine zero out, and stick it in the creek facing upstream so that water flows into the space between the electrodes. Here's Belle taking a conductivity measurement at our Gazos Creek (forest) site:

Belle measures conductivity at our Gazos Creek (forest) site. 7 May 2016 © Allison J. Gong
Belle measures conductivity at our Gazos Creek (forest) site.
7 May 2016
© Allison J. Gong

The only tricky field measurement was the one for dissolved oxygen (DO). This involved collecting a water sample (easy enough), inserting an ampoule containing a reactive chemical into the sample tube, breaking off the tip of the ampoule so that water flows into the tube, and gently mixing the contents of the ampoule for two minutes. Then you compare the color of the ampoule with a set of standards in the kit to estimate the DO level in mg/L (=ppm).

Standards for measuring dissolved oxygen. 7 May 2016 © Allison J. Gong
Standards for measuring dissolved oxygen.
7 May 2016
© Allison J. Gong

Our second and third sites were up in the mountains, at Old Woman's Creek and Gazos Creek (forest). With all the rain we had over the winter the riparian foliage has exploded into green. It was all absolutely lush and glorious. How lucky we were to spend the day in such surroundings!

Gazos Creek in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Gazos Creek in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong
Gazos Creek in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Gazos Creek in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong

And there were a great many banana slugs! All of them were solid yellow, with no brown spots. At one point there were so many slugs that we had to be extremely careful not to step on them.

Banana slug (Ariolimax sp.) in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Banana slug (Ariolimax sp.) in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong
Banana slug (Ariolimax sp.) in the Santa Cruz Mountains. 7 May 2016 © Allison J. Gong
Banana slug (Ariolimax sp.) in the Santa Cruz Mountains.
7 May 2016
© Allison J. Gong

Our fourth and final site was Whitehouse Creek, which flows into the Pacific Ocean to the south of Franklin Point. We had about a 10-minute hike to the creek from the road. By that point it had been raining for quite a while. Although we were protected from the rain by the trees when we were up in the forest, when we walked out to the field to the beach we were lucky it had eased to a light sprinkle.

Whitehouse Creek where it flows into the Pacific Ocean. 7 May 2016 © Allison J. Gong
Whitehouse Creek where it flows into the Pacific Ocean.
7 May 2016
© Allison J. Gong

After we finished our sampling we all agreed that we had to have gotten the most picturesque sites. None of the other teams got to visit both forest and beach for their sampling! We didn't drop off our samples and equipment until 14:00, a couple of hours later than the other groups, but who would complain about having getting to spend the day tromping through the forest AND the beach?

Our feet! 7 May 2016 © Allison J. Gong
Our feet!
7 May 2016
© Allison J. Gong

In recent years, citizen science has become a very important provider of biological data. This movement relies on the participation of people who have an interest in science but may not themselves be scientists. There is some training involved, as data must be collected in consistent ways if they are to be useful, but generally no scientific expertise is required. The beauty of citizen science is that it allows scientists and science educators to share the experience of discovery with people who might not otherwise know what it's like to really examine the world around them. I think it is a great step towards creating a less science-phobic society, one in which science informs policy on scientific matters.

LiMPETS stands for "Long-term Monitoring Program and Experiential Training for Students." The program seeks both to give students experience doing real science and to establish baseline and long-term ecological data for California's sandy shores and rocky intertidal areas. As an intertidal ecologist myself, I naturally wanted my students to participate in the rocky intertidal monitoring.

The LiMPETS coordinator for Santa Cruz and Monterey Counties is a woman named Emily Gottlieb. She and I decided to have my class monitor the site at Davenport Landing. Emily came to class two weeks ago to train the students in identifying the relevant organisms and recording the data.

Practice tidepooling, training for real-life monitoring in the intertidal. 15 April 2016 © Allison J. Gong
Practice tidepooling, training for real-life monitoring in the intertidal.
15 April 2016
© Allison J. Gong

Tidepooling is easy and comfortable when you do it inside a classroom seated at a table. But today was all about the real thing. It was overcast and breezy when we met up with Emily at 09:30 and headed out to the site. At first the students seemed to be a little skeptical about the whole thing.

Students get their first look at their morning workplace. 29 April 2016 © Allison J. Gong
Students get their first look at their morning workplace.
29 April 2016
© Allison J. Gong

We were extremely fortunate to be joined this morning by Dr. John Pearse, Professor Emeritus of Biology at UC Santa Cruz, one of my graduate advisors, and the founder of LiMPETS. Dr. Pearse has been monitoring some sites, including this one at Davenport Landing, since the 1970s. He is THE person to talk to about intertidal changes in California over the past 40 years.

Years ago John set up permanent transect lines and plots at Davenport Landing, marking the origin of each transect with a bolt. The first thing we had to do when we got to the site was find the bolt. Then John ran out the transect line to the lowest point that students could work safely, given the conditions of tide and swell; this happened to be about 15 meters.

Dr. John Pearse runs out the vertical transect line. 29 April 2016 © Allison J. Gong
Dr. John Pearse runs out the vertical transect line.
29 April 2016
© Allison J. Gong

For the vertical transect, 1/2-meter square quadrats were placed at each meter. Some organisms were counted as individuals and others were marked as either present or absent in each of the 25 small squares within each quadrat. Emily gave the students their assignments and data sheets, and they spread out along the transect line.

Students working the vertical transect. 29 April 2016 © Allison J. Gong
Students working the vertical transect.
29 April 2016
© Allison J. Gong
LiMPETS sampling 29 April 2016 © Allison J. Gong
LiMPETS sampling
29 April 2016
© Allison J. Gong
LiMPETS sampling 29 April 2016 © Allison J. Gong
LiMPETS sampling
29 April 2016
© Allison J. Gong
LiMPETS sampling 29 April 2016 © Allison J. Gong
LiMPETS sampling
29 April 2016
© Allison J. Gong

Aside from the experience of learning how to do this kind of data collection, I hope the students understand what a privilege it is to have been in the field with John Pearse. He has such a thorough understanding of the intertidal that he is a treasure vault of knowledge. Here he is explaining what owl limpets are all about:

Dr. John Pearse explains what owl limpets are and how to find them. 29 April 2016 © Allison J. Gong
Dr. John Pearse explains what owl limpets are and how to find them.
29 April 2016
© Allison J. Gong

Interestingly, we didn't find many owl limpets. And certainly not any of the big ones that I see all the time at Natural Bridges. John said that this is one of the differences between a protected area (Natural Bridges) and an unprotected one (Davenport Landing). Collecting is not allowed at Natural Bridges, and the owl limpets are left unmolested--by humans, at least--to grow large (10+ cm long is not uncommon). On the other hand, people do collect at Davenport and I've heard it said that owl limpets are good to eat; today we saw fewer than a dozen owl limpets and they were all small, none larger than 3 cm long.

The sun came out after a while, but the wind also picked up. The tide came up as well, and some of the students got more than a little wet. Overall they were real troopers, though, and I didn't hear much complaining. Next week is the last lab of the semester, and we'll be participating in another citizen science project. But that's a tale for another day.

I did take advantage of the beautiful setting to have one of Emily's LiMPETS volunteers (and a former student of mine!) take our class photo. Here we are, the Bio 11C class of 2016!

Class photo, taken at Davenport Landing. 29 April 2016 © Allison J. Gong
Class photo, taken at Davenport Landing.
29 April 2016
© Allison J. Gong

2

For as long as sentient humans have walked across the surface of the planet, they have observed the world around them. Quite often these observations had direct life-or-death consequences, as most of survival had to do with finding food while not becoming someone else's dinner. Fast forward a few million years and we find ourselves mired in technology, often interacting with the outside world through some sort of digital interface. And yes, I totally get the irony of writing that statement in a blog. Be that as it may, I've found that people generally don't pay much attention to what's going on around them. My job as a biology professor is to teach some of the forgotten skills of the naturalist, including the practice of observation.

Today I took my Ecology students birdwatching. We looked at other things, of course, but birds were the primary focus of today's observations. We started the day near the mouth of Elkhorn Slough in Moss Landing, where we were immediately challenged to identify some shorebirds. Fortunately we had a guest lecture from a seabird biologist yesterday, and she gave us some important clues to help us with our field IDs.

Some shorebirds are fairly easy to identify, such as this long-billed curlew (Numenius americanus). It was foraging in a stand of pickleweed just off the road, which is the only reason I was able to take a decent photo of it.

Long-billed curlew (Numenius americanus) at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Long-billed curlew (Numenius americanus) at Elkhorn Slough.
18 March 2016
© Allison J. Gong

We also saw marbled godwits (Limosa fedoa), willets (Tringa semipalmata), as well as the flocking "peeps," which we never got a really good look at but all agreed might have been sanderlings (Calidris alba).

One of the things we had been warned about was the difficulty of identifying gulls. There are some features that help when the birds are in adult breeding plumage, but gulls go through several juvenile plumages before attaining their adult colors and there's a lot of phenotypic overlap among species. Case in point:

Gulls (Larus spp.) on Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Gulls (Larus spp.) on Moss Landing State Beach.
18 March 2016
© Allison J. Gong

Some of these adults are western gulls (Larus occidentalis) but some look different (smaller bodies, different beak coloration). They might be sub-adult westerns or another species entirely. And even the birds in juvenile plumage varied a lot; some were speckled or mottled while others were more uniformly colored. Several birds (not in this photo) had pale gray backs and pale tan flanks. According to my field guide, National Geographic's Field Guide to the Birds of North America, there are several species that have this plumage in their second or third winter. We kind of gave up on the gulls, but to be honest we didn't have a lot invested in identifying them.

The highlight of the beach part of the field trip, at least for me, was seeing snowy plovers (Charadrius nivosus). These tiny birds are perfectly colored to hide in the sand, and unless they move they are almost impossible to see. I found them because we unwittingly wandered too far up the beach towards the dunes and accidentally flushed them from their divots in the sand.

Snowy plovers (Charadrius nivosus) at Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Snowy plovers (Charadrius nivosus) at Moss Landing State Beach.
18 March 2016
© Allison J. Gong

Can you spot all four plovers in this photo? Here's another quartet:

Snowy plovers (Charadrius nivosus) at Moss Landing State Beach. 18 March 2016 © Allison J. Gong
Snowy plovers (Charadrius nivosus) at Moss Landing State Beach.
18 March 2016
© Allison J. Gong

This morning I saw my first humpback whale of the season. A couple of whale watching boats were lingering around the mouth of the harbor, which should have clued us in that there was something going on. However, it took a kayaker to tell us that there were breaching humpbacks just off the jetty before we realized. And I call myself a naturalist? Sheesh.

This bird is, I think, a third-winter western gull (L. occidentalis).

Western gull (Larus occidentalis) at Elkhorn Slough in Moss Landing, CA. 18 March 2016 © Allison J. Gong
Western gull (Larus occidentalis) at Elkhorn Slough in Moss Landing, CA.
18 March 2016
© Allison J. Gong

This species is endemic to the California Current, which means that it is found nowhere else. The pink legs are characteristic of western gulls, and the black on the tip of the bill indicates a third-winter bird. Adults have a red spot towards the end of the bill but not on the very tip. If you look closely you can see that this bird has a tiny bit of red immediately proximal to the black smudge.


After lunch we convened at the Elkhorn Slough National Estuarine Research Reserve visitor center, across the highway and inland a bit from our morning site. The students got a 30-minute orientation to the history and geography of the Slough, then we went on a hike.

Orientation to the Elkhorn Slough National Estuarine Research Reserve. 18 March 2016 © Allison J. Gong
Orientation to the Elkhorn Slough National Estuarine Research Reserve.
18 March 2016
© Allison J. Gong

The first leg of the hike was a short walk to what is appropriately called the overlook. This is where I gave the students their only real assignment of the day. They had to spend 10 minutes in silent observation. They could write in their notebooks and look around with binoculars, but they were not allowed to talk at all. With some groups this is a nigh-impossible feat, but these students did a fantastic job. After the 10-minute observation period we discussed what they had seen and heard. One student said he heard 26 bird calls, but didn't know how many of them were the same bird making different calls. Others mentioned the sounds of human activity--traffic on the highway, planes flying overhead, the beep-beep-beep of a truck in reverse--as well as the buzz of insects and birds. I asked if anyone else had noticed the shadow of a turkey vulture that flew directly over us.

Silent observation period at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Silent observation period at Elkhorn Slough.
18 March 2016
© Allison J. Gong

I think this is a very valuable exercise and would like to extend this period of silent observation to 15 or 20 minutes for future classes. In a lot of ways class always feels a little frantic, and to slow down and simply be a part of nature is a luxury of time that many of us don't have. Alas, we had other places to visit on the hike and needed to get moving again.

Turkey vulture (Cathartes aura) in flight over Elkhorn Slough. 18 March 2016 © Allison J. Gong
Turkey vulture (Cathartes aura) in flight over Elkhorn Slough.
18 March 2016
© Allison J. Gong

Much of Elkhorn Slough used to be a dairy, and the Slough is still surrounded by agricultural fields. There are two barns on the Reserve, named Big Barn and Little Barn. Little Barn is used for equipment storage and isn't open to the public, but you can walk into Big Barn. There are two barn owl boxes in Big Barn. We searched under them for owl pellets; we didn't find any intact pellets but did see some that had been dissected by previous human visitors.

Little Barn (foreground) and Big Barn (background) at Elkhorn Slough. 18 March 2016 © Allison J. Gong
Little Barn (foreground) and Big Barn (background) at Elkhorn Slough.
18 March 2016
© Allison J. Gong

I don't think I've ever seen this much green at Elkhorn Slough. All of the El Niño rains have brought forth a lot of wildflowers and grasses. We hiked past a large stand of non-native poison hemlock (Conium maculatum) on our way to Big Barn. That stuff is going to be difficult to eradicate, as it spreads quickly and outcompetes native species. And yes, this plant is highly toxic to mammals and was, in fact, used by the ancient Greeks for human executions (including that of Socrates).

When we returned to the visitor we asked the Reserve's naturalist, Jane, to take our picture. So this is class photo #1 of the semester. It's not complete, as three students were absent today. I hope to get a picture of the entire class another day.

OLYMPUS DIGITAL CAMERA

I wanted to take the students to the woodpeckers' acorn granary, but we didn't have time to hike that far. Spring break is coming up week after next, and I think I'll go back to the Slough to say "hello" to the family of acorn woodpeckers. I'm looking forward to having more time than I do at the moment to play outdoors. I want to do some drawing, too!

This year I'm teaching Ecology for the second time. It is a field-intensive course: we have all day on Fridays to meet outside the classroom and do something outdoors. Most people understand that hands-on experiences are the best way to learn, whether the subject matter is field-based or computer-based (such as working with software for statistical analyses), and part of my job this semester is to provide as many diverse experiential activities as I can for my students. As I am a marine biologist by training and inclination the course is biased towards marine ecology, but I'm doing my best to include terrestrial activities as well.

Today we visited the Younger Lagoon Reserve on the Long Marine Lab campus, to participate in the ongoing habitat restoration project. We were met by Beth Howard, the reserve manager, and Tim Brown, the reserve steward, who gave us a brief history of the reserve and the conservation work going on there.

Beth (aqua jacket) and Tim (yellow jacket) give us the rundown on restoration at the Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
Beth (aqua jacket) and Tim (yellow jacket) give us the rundown on restoration at the Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

We are standing in a plot that had very recently (as in within the last week) been planted with young grasses. The reserve staff, volunteers, and student interns collect seeds from local populations of native plants, germinate and grow them up in the greenhouse, and then plant them the following spring. The idea is that in a few years the larger scrub plants, such as coyote bush and sticky monkey flower, will outcompete the non-native weeds and the plant community will more or less take care of itself. The annual flowering plants should re-seed and repopulate the area at the end of the season.

The master design in this area of the Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
The master design in this area of the Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

Tim, as the reserve steward, designed this bit of the reserve. The areas within the polygons are to be planted with flowering annuals, while the spaces between polygons are to be filled with perennial grasses. To make seed gathering easier, we were told to plant in patches, resulting in medium-sized patches of several plants of one species grouped together.

In addition to helping plant upwards of 1500 plants today, we got to see how last year's plants are doing! I'm proud to report that they have filled in beautifully and grown a lot:

On the right: Plants that my students and I planted last year. On the left: Plants that were set out about a week ago. Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
On the right: Plants that my students and I planted last year. On the left: Plants that were set out about a week ago. Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

Not all the vegetation in the right side of the photo was the stuff that we planted last year. Some of it was weeds. The reserve workers are about to shift from planting mode to weeding mode, to remove as many weeds as possible before they have a chance to flower and set seed.

When it was time to start the actual planting, we were shown how to make holes and insert the baby plants.

Demonstration of the "dibble dance." Younger Lagoon Reserve © Allison J. Gong
Demonstration of the "dibbler dance." Younger Lagoon Reserve
© Allison J. Gong

The dibbler is a nifty tool that makes holes in the ground. You clear off the layer of mulch, shove the dibbler into the soil, and wiggle it around, making a perfectly round hole. The plants are grown in cone-tainers, that not-so-coincidentally are the exact same size and shape as the holes made by the dibbler. I asked Beth, and she confirmed that the dibbler and cone-tainers are made by the same company. Once the dibbler has made the hole you remove a plant from a cone-tainer, stick it in the hole, tamp down the soil around it, and replace the mulch.

We were instructed to place the holes 18" apart, and not in a strict grid pattern. The goal is to restore a natural setting, not create a formal garden. After the instructions we all got to play in the dirt.

Student working at YLR Students at YLR Student at YLR Students at YLR

In addition to planting flowering annuals in a couple of the polygons, we also did this:

Native grasses my students and I planted at Younger Lagoon Reserve. 4 March 2016 © Allison J. Gong
Some of the native grasses my students and I planted at Younger Lagoon Reserve.
4 March 2016
© Allison J. Gong

After our work in the field we went across the marine lab to Younger Lagoon. It rained on us for a while, and we sheltered under the lean-to and looked out over the lagoon. It's beautiful even in the rain.

Younger Lagoon 4 March 2016 © Allison J. Gong
Younger Lagoon
4 March 2016
© Allison J. Gong
Male red-winged blackbird (Agelaius phoeniceus) at Younger Lagoon. 4 March 2016 © Allison J. Gong
Male red-winged blackbird (Agelaius phoeniceus) at Younger Lagoon.
4 March 2016
© Allison J. Gong

This red-winged blackbird was loudly staking his claim to a bit of territory. He never showed off his red epaulettes, though. Another bird was replying from the top of a cypress tree a short distance away. The back-and-forth went on for about five minutes, before one of the birds flew off.

For the first time I got to hike the trail that parallels the east side of Younger Lagoon. We didn't go down onto the beach, but I was able to see a perspective of the large rock at the mouth of the lagoon that I'd never looked on before.

Large rock at the mouth of Younger Lagoon. 4 March 2016 © Allison J. Gong
Large rock at the mouth of Younger Lagoon.
4 March 2016
© Allison J. Gong

Does anybody else see the profile of Abraham Lincoln in this rock?

Today my students and I visited the Monterey Bay Salmon and Trout Project hatchery, to learn about local efforts to save the federally endangered coho salmon (Oncorhynchus kisutch). The coho is one of five species of Pacific salmon found on the coast of North America, the other four being the Chinook (O. tshawytscha), the chum (O. keta), the sockeye (O. nerka), and the pink (O. gorbuscha). The coho's range extends in the North Pacific from northern Japan up along Russia, across the Aleutians, and down the coast of North America to the northern bit of Monterey Bay. In our area the coho return to their natal streams (Scott Creek, Big Creek, and occasionally the San Lorenzo River) during the winter rains in January and February.

The local population of coho make up an evolutionarily significant unit (ESU). This means that they are locally adapted to the extent that they are biologically and genetically distinct from other populations. For example, coho from Alaska, where they are much more common, cannot be successfully transplanted into our watershed because they are genetically programmed to spawn in the fall, the time of year when our streams are dry or disconnected from the ocean due to sand bars. So these fish aren't just any old salmon. They have evolved to live in this particular watershed and as such are irreplaceable.

Our first stop of the morning was to the fish trap on Scott Creek. The weir, the structure that extends across the river in the photo below, traps fish that are swimming upstream. Once on the upstream side of the weir, the fish are directed into the cage, from which they can be removed so that fisheries biologists can collect life history data--species, sex, weight, length--before they are released to continue their journey upstream (if they are steelhead) or transported to the hatchery to be spawned (if they are coho).

Students visiting the fish trap on Scott Creek. 19 February 2016 © Allison J. Gong
Students visiting the fish trap on Scott Creek.
19 February 2016
© Allison J. Gong

No fish were in the trap when we got there this morning but our host, a NMFS biologist named Erick, told me that eight coho had been caught yesterday. We did see a pair of steelhead swimming in the water upstream of the weir. Anytime I see a fish out of water, I forget how difficult it is to find them when they're in their natural habitat. The spots on a steelhead's back blend in perfectly with the ripples of the water and the gravel of the stream bed.

Pair of steelhead in Scott Creek. 19 February 2016 © Allison J. Gong
Pair of steelhead in Scott Creek.
19 February 2016
© Allison J. Gong

Do you see two faintly reddish blurs in the photo above? Those are the fish. They are facing upstream, to the right. The larger fish on the top is the female.

After the visit to the fish trap on Scott creek we drove up to the hatchery, which is located along Big Creek. The hatchery's day-to-day operations are run by a couple of people from MBSTP. During the busy seasons staff and interns from the NMFS lab in Santa Cruz work up there, too, so the little hatchery building gets quite crowded. We were fortunate to get to see pretty much all the steps involved in trying to return an endangered species from the brink of extinction.

Male salmon, called bucks, are held in pens outdoors. They can contribute more than one sperm donation in a season, just as in the wild a male can fertilize the eggs of more than one female. A buck is taken from the pen, sedated, and then is milted for his sperm. The milt is collected into a glass test-tube and kept dry; once the sperm make contact with fresh water they become activated, and there is a 30-second window during which they can fertilize eggs. Sperm can also be damaged by exposure to UV radiation, so the test tubes are always held in a closed hand. Back inside the hatchery building Erick takes a look at the sperm under a microscope to make sure they can swim properly.

Female salmon are called hens. Before eggs are taken the hens are anaesthetized and examined by palpation and ultrasound to confirm that their eggs are mature. A sample of ovarian fluid is taken and sent off to be tested for disease. When a hen passes the ripeness test she is sliced open to release her eggs into four metal basins.

Collecting a sample of ovarian fluid from a ripe coho hen. 19 February 2016 © Allison J. Gong
Collecting a sample of ovarian fluid from a ripe coho hen.
19 February 2016
© Allison J. Gong

A single female's eggs are fertilized by the sperm of four males. The fisheries biologists keep a detailed matrix of who mates with whom, so that they can avoid additional inbreeding in a population of fish that has already undergone a genetic bottleneck. Milt that has been collected from broodstock males is placed over the eggs. Fertilization occurs once fresh water is added to the basin. The egg-sperm combination is swirled ("just like panning for gold," Erick explained) for two minutes, then the eggs are rinsed and disinfected before being placed into a 100% humidity cold incubator held at 11°C.

The eggs remain in the incubator until the embryos have developed eyes. Then they are transferred into trays through which water flows. When they've absorbed most of their yolk sac they get placed into large indoor trays where they will be fed until they are big enough to go into the outdoor tanks. They'll spend about a year in the outdoor tanks and should then be ready to undergo the process of smoltification, during which their physiology undergoes the alterations necessary for the transition to marine life.

Erick explains hatchery operations, standing next to one of the outdoor pens where smolts are held. 19 February 2016 © Allison J. Gong
Erick explains hatchery operations, standing next to one of the outdoor pens where smolts are held.
19 February 2016
© Allison J. Gong

When I took last year's class to the hatchery we didn't get to see much activity because there were so few fish returning due to the prolonged drought and low water in the creek. This year's El Niño, which has brought rain, has also made it possible for the fish to get into the creeks. Coho are a 3-year species, so the fish returning this year were born in 2013. These fish outmigrated as smolts into drought conditions, and fortunately for them they return during a rainy year. Their progeny will outmigrate in 2017, hopefully into a strong upwelling which will produce lots of food. And when they return in 3-4 years, I hope that there is enough rain for their creek to flow.

On a misty, cool Friday I took my Ecology students up the coast a bit to Rancho del Oso, the nature center at the ocean end of Big Basin Redwoods State Park, which was the first state park in California. It was our first field trip of the semester, and goal was to get outdoors and start observing patterns in nature. The weather forecast called for a 50% chance of rain, but we lucked out and got the other 50% and had only light drizzle to contend with.

We spent the morning wandering through the woods. Even though visibility wasn't great there was a lot to see close at hand. For example, I've always loved how a lowly spider web looks when the silk has collected beads of dew:

Orb web in the morning mist, Rancho del Oso. 29 January 2016 © Allison J. Gong
Orb web in the morning mist, Rancho del Oso.
29 January 2016
© Allison J. Gong
Orb web at Rancho del Oso. 29 January 2016 © Allison J. Gong
Orb web at Rancho del Oso.
29 January 2016
© Allison J. Gong

Am I the only person who has a favorite tree? I don't mean a favorite species or type of tree, but a favorite individual tree. Mine is an oak, and it isn't at all difficult to find, just a few meters up the trail leading from the nature center to Waddell Creek. Oak trees in general are my favorite trees in California, and this one is a magnificent specimen. One of the things I love about these coastal live oaks (Quercus agrifolia) is the way that the mature tree's branches grow all gnarled and reach along the ground. They have such character and seem so wise.

Coastal live oak (Quercus agrifolia) at Rancho del Oso. 29 January 2016 © Allison J. Gong
Coastal live oak (Quercus agrifolia) at Rancho del Oso.
29 January 2016
© Allison J. Gong

If you climb up to the tree and look through it over the ridge there's a fantastic view into Big Basin Redwoods State Park. Today the view was obscured by fog, but even so it was pretty spectacular, almost eerie.

Rancho del Oso is at the bottom of the Skyline-to-the-Sea trail, which starts up in the redwoods at the top of the park. Waddell Creek flows through the park, under Highway 1, and empties into the Pacific Ocean. Strong afternoon winds in the spring and summer make Waddell Beach is a very popular spot for kitesurfers.

Fog has a way of turning a technicolor world into black and white:

View of Pacific Ocean from Rancho del Oso. 29 January 2016 © Allison J. Gong
View of Pacific Ocean from Rancho del Oso.
29 January 2016
© Allison J. Gong

Fog also makes for difficult bird watching; on the other hand it brings certain other wildlife out of hiding:

Banana slug (Ariolimax sp.) at Rancho del Oso. 29 January 2016 © Allison J. Gong
Banana slug (Ariolimax sp.) at Rancho del Oso.
29 January 2016
© Caitlin Sorkhabi, used with permission

and:

California newt (Taricha torosa) at Rancho del Oso. 29 January 2016 © Allison J. Gong
California newt (Taricha torosa) at Rancho del Oso.
29 January 2016
© Caitlin Sorkhabi, used with permission

Can't you see the determination of this little newt in its posture? They are single-minded when it comes to getting from here to there. The nature center has put up "Newt Crossing" signs to slow down the motorists. Driving slowly won't keep a newt from getting squished if it is run over, of course, but it does help drivers see the newts so they DON'T get run over.


After lunch we crossed the highway and went down to the beach. The National Weather Service had put out a high surf advisory, and the waves were big. I'd guess that they were about 3x my height. There was also a lot of foam blowing over the beach.

Some of the foam made very interesting iridescent bubbles on the sand and various bits of flotsam washed up on the beach:

Sea foam at Waddell Beach. 29 January 2016 © Allison J. Gong
Sea foam at Waddell Beach.
29 January 2016
© Allison J. Gong
Sea foam at Waddell Beach. 29 January 2016 © Allison J. Gong
Sea foam at Waddell Beach.
29 January 2016
© Allison J. Gong
Sea foam at Waddell Beach. 29 January 2016 © Allison J. Gong
Sea foam on driftwood at Waddell Beach.
29 January 2016
© Allison J. Gong

There were some really fascinating patterns in the sand. I wasn't the only person who noticed and appreciated them.

Sand at Waddell Beach. 29 January 2016 © Allison J. Gong
Sand at Waddell Beach.
29 January 2016
© Allison J. Gong
Sand and rocks at Waddell Beach. 29 January 2016 © Allison J. Gong
Sand and rocks at Waddell Beach.
29 January 2016
© Allison J. Gong

And lastly, we found a Strange Object. It was a white, oblong Object high on the beach, and it squeaked a bit, much like a dog's chew toy does, when I stepped lightly on it--obviously it was hollow.

The Strange Object we found at Waddell Beach. 29 January 2016 © Allison J. Gong
The Strange Object we found at Waddell Beach.
29 January 2016
© Caitlin Sorkhabi, used with permission

Curiosity piqued, I borrowed a knife from a student and cut it open. The Object had the texture of a marshmallow, but was considerably tougher. It was about 4 mm thick. And on the inside there were remnants of what looked like formerly living animal tissue:

Interior of the Strange Object we found at Waddell Beach. 29 January 2016 © Allison J. Gong
Interior of the Strange Object we found at Waddell Beach.
29 January 2016
© Caitlin Sorkhabi, used with permission

What was this Strange Object? Well, I don't know. My first thought was that it might be the empty shell of an animal that had hatched out of it. However I can't think of what local creature might hatch out of an egg this size and of this consistency. Birds have calcified egg shells . . . this Object wasn't calcified. Some reptiles have leathery eggs . . . but what local species of reptile, marine or otherwise, would hatch out of an egg this size? And the "shell" of this thing was thick, much thicker than an egg shell would be, as egg shells need to allows respiratory gases pass between the embryo and the external environment.

So, call me flummoxed. Do you have any idea what this Object could be? If you do, let me know in the comments.

%d bloggers like this: