Skip to content

About a week ago, as part of yearly summer fire prevention, some of the fields at the marine lab were mown. After this happens many of the little critters living in the dried grasses are left homeless and become relatively easy prey for predators of all sorts. Since the mowing I had been seeing a great blue heron hunting in the field, and it took me until the day before yesterday to remember to bring the camera with me. Fortunately it was overcast that morning and the heron was there!

Great blue heron (Ardea herodias) hunting for rodents at Long Marine Lab
28 July 2018
© Allison J. Gong

I watched the heron hunt (unsuccessfully) for a while, then my attention was drawn to a much more dynamic avian predator. A juvenile red-tailed hawk, possibly the one that grew up and fledged from the nest across the canyon from my house, flew overhead and perched in a cypress tree. From there it had a birds-eye view of the field, and it didn't take long for it to spot a late breakfast. The heron left, squawking loudly to protest the interruption to its hunting.

Juvenile red-tailed hawk (Buteo jamaicensis) with prey, at Long Marine Lab
28 July 2018
© Allison J. Gong

The hawk actually skinned the rodent before eating it. . .

Juvenile red-tailed hawk (Buteo jamaicensis) consuming prey, at Long Marine Lab
28 July 2018
© Allison J. Gong
Juvenile red-tailed hawk (Buteo jamaicensis) consuming prey, at Long Marine Lab
28 July 2018
© Allison J. Gong

. . . and then it ate the skin!

Juvenile red-tailed hawk (Buteo jamaicensis) consuming skin of prey, at Long Marine Lab
28 July 2018
© Allison J. Gong
Juvenile red-tailed hawk (Buteo jamaicensis) consuming skin of prey, at Long Marine Lab
28 July 2018
© Allison J. Gong

The hawk did not linger on the ground after eating its rodent prey. It flew back across the road up to the cypress tree again. I got lucky and managed to catch a few shots as it flew by.

Juvenile red-tailed hawk (Buteo jamaicensis) in flight
28 July 2018
© Allison J. Gong
Juvenile red-tailed hawk (Buteo jamaicensis) in flight
28 July 2018
© Allison J. Gong
Juvenile red-tailed hawk (Buteo jamaicensis) in flight
28 July 2018
© Allison J. Gong

Of course, I have no way of knowing if this young hawk is indeed the one we watched grow up. I'm reasonably certain that the marine lab is in the parents' foraging territory, as I've watched them leave the nest site and fly towards the lab. At some point the juvenile will have to disperse away from its parents and establish a territory elsewhere. In the meantime, it, along with other birds of prey, will have easy pickings in the fields. This has been a banner year for wood rats and gophers (ugh!), which means there should be plenty of food to go around.

By the way, the heron did not catch any rodents while I was watching. It did not return after the hawk arrived.

In early July we joined my in-laws on a 2-day driving trip around the International Selkirk Loop, a series of highways that follow rivers and lakes through the northeast corner of Washington, the northern skinny part of Idaho, and southern British Columbia. These roads pass through some beautiful country in both the U.S. and Canada, and it would be a nice trip to take at a more leisurely pace, stopping to explore some of the little towns along the way.

The International Selkirk Loop

Knowing that we'd be driving through some spectacular scenery, I decided to test-drive a wide-angle lens. I rented the Nikkor 16-80mm lens, designed for crop-sensor cameras such as my Nikon D7200. I don't have much experience with wide-angle lenses, so it was a different kind of photography for me. And boy, talk about a whole new way of seeing things! I could get into landscape photography now. This post will showcase some of the photos I took with this lens.

Day 1:  Our trip started in Blanchard, Idaho, a tiny dot on the South Lakes Super Side Trip outlined in pink in the map. Our first sight-seeing stop was the Kootenay National Wildlife Refuge, near the town of Bonners Ferry and about 20 miles south of the Canadian border. I hoped to see a moose. En route to the Refuge we took a dirt road and got a little lost. But our accidental detour took us through some wide open landscapes, and the sky was fantastic.

Rapeseed field in northern Idaho
5 July 2018
© Allison J. Gong

The Refuge is on the Pacific Flyway and is visited by many migrating birds in the spring and autumn. Mid-summer is supposed to be the best time to see moose, but the moose didn't read the same pamphlet that we did.

Seriously, doesn't this look like quintessential moose habitat? No moose to be seen.

Kootenai Wildlife Refuge
5 July 2018
© Allison J. Gong

Crossing into Canada, we continued driving north along the east side of Kootenay Lake. One of the perks of the trip is the free ferry ride across the lake, from the town of Kootenay Lake on the east shore to Balfour on the west shore. During the summer season the crossing is traversed by two ferries, the M/V Osprey 2000 and the smaller M/V Balfour. We were on the Osprey, which runs year-round. Kootenay Lake remains ice-free in the winter, allowing business and pleasure craft to operate year-round.

The M/V Osprey 2000
5 July 2018
© Allison J. Gong

Here's the other ferry vessel making the eastward crossing:

The M/V Balfour
5 July 2018
© Allison J. Gong

That night we stayed at Ainsworth Hot Springs Resort, where we had a fantastic dinner and 'took the waters' before going to bed.

Day 2:  Our first stop on the second day was a town called Kaslo, the home of the S/S Moyie. The Moyie was one of several steam ships that transported passengers and cargo up and down Kootenay Lake. She operated from 1898 to 1957, when she was retired from service and sold to the City of Kaslo for $1.00. She was hauled up onto land, permanently dry-docked, and restored to become a museum. As the oldest known intact vessel of her type, the Moyie gives visitors a glimpse into the past. One thing I noticed right away was that people were a lot smaller 100 years ago.

The S/S Moyie, in Kaslo, British Columbia
6 July 2018
© Allison J. Gong
Rail and boat map
6 July 2018
© Allison J. Gong

Back in the day, there were 11 sternwheelers running on Kootenay and the other lakes in the region. The really cool thing was that they connected with the railroad lines, allowing transport of goods and people throughout the area before there were roads. Passengers would board the Moyie in the morning, stow their children and the nanny in one of the staterooms, and party in the parlor while cruising up or down the lake. It would be a leisurely cruise, with the passengers relaxed, well fed, and liquored up.

 

Parlor of S/S Moyie in Kaslo, British Columbia
6 July 2018
© Allison J. Gong

Passengers were looked after by a crew of stewards. I like kitchens, so this butler's pantry was my favorite part of the boat. Note sloping floor!

Butler's pantry of S/S Moyie in Kaslo, British Columbia
6 July 2018
© Allison J. Gong

And because safety always comes first, here's the obligatory set of instructions for how to put on your cork life jacket. I'm guessing that they are called Cork Life Jackets because they are filled with cork, which apparently was A Real ThingTM.

6 July 2018
© Allison J. Gong

The Moyie is docked on land right next to the shore of Kootenay Lake. Just off her port side there's a piling with an osprey nest on the top. And we got lucky in that the osprey was there, too!

Osprey (Pandion haliaetus) in Kaslo, British Columbia
6 July 2018
© Allison J. Gong

The osprey was the first of our wildlife sightings on the second day of the trip. Heading west on Highway 31A between Kaslo and New Denver, we stopped at a little lake on the side of the road. This was Fish Lake.

Fish Lake
6 July 2018
© Allison J. Gong

In addition to being a pretty little lake in the mountains, Fish Lake is home to a species of amphibian called the Western Toad (Anaxyrus boreas). The toads are likely restricted to a few lakes in this basin and are listed as Near Threatened by the World Conservation Union, and as Special Concern by the Committee on the Status of Endangered Wildlife in Canada. We didn't see any toads, but there were many proto-toads in the lake.

Proto-toads (i.e., tadpoles) of the western toad (Anaxyrus boreas) in Fish Lake
6 July 2018
© Allison J. Gong

And guess what we saw a few miles up the road from Fish Lake? That's right, a moose! And not just one moose, but a cow and a calf. They were right off the side of the road, and all we had to do to get a good look was find a safe place to turn around and drive by again. I took these shots from the car.

Moose and calf (Alces alces) near Fish Lake in British Columbia
6 July 2018
© Allison J. Gong

Despite her proximity to the highway, the cow was pretty undisturbed. She kept feeding in the shallow water. It was surprising how long she could keep her head underwater. Meanwhile the calf, obviously not weaned yet as it kept trying to nurse and didn't feed on vegetation, just waited until its mother raised her head again. Then she looked around to check her surroundings and plunged her head right back into the water.

"What happened to my mama?"
6 July 2018
© Allison J. Gong

I haven't always had the best of luck in moose country, so I was glad to see these two. They are odd-looking, lumpy animals, even the calves. And to get a good close-up look at two wild moose totally made up for not seeing any at the Kootenai Wildlife Refuge.

So, what do I think of the Selkirk Loop? Highly recommended! The roads are lightly traveled, passage between the U.S. and Canada is easy through these ports of entry, and the scenery is spectacular. You can take the driving trip as we did, or stop and camp along the way. When we were there in early July the weather was quite warm, but those were the first sunny days of the season after a long, wet spring. You'd probably want to have a back-up plan in case your camping trip gets rained out. Honestly, though, the entire drive was gorgeous. If the opportunity comes your way to drive this loop, take it. You won't be sorry.

The marine macroalgae, or seaweeds, are classified into three phyla: Ochrophyta (brown algae), Rhodophyta (red algae), and Chlorophyta (green algae). Along the California coast the reds are the most diverse, with several hundred species. The browns have the largest thalli (the phycologists' term for the bodies of algae), including the very large subtidal kelps as well as the smaller intertidal rockweeds. The green algae are small in both thallus size/complexity and species diversity; many of the greens are filamentous and look like nothing more than slime growing on rocks or other surfaces.

On the other hand, what appears to be simple at first glance can turn out to be delightfully complicated and puzzling upon closer examination. Take, for example, the two species of green algae in the genus Codium that occur intertidally in northern California: Codium setchellii and C. fragile. Codium setchellii is a native species here. It grows as a thick rugose mat over rocks in the mid-intertidal. Its color is a very deep olive green, but when dry it looks almost black.

Codium setchellii at Franklin Point
15 June 2018
© Allison J. Gong

Codium setchellii has a smooth texture and feels like very thick velvet. It grows on vertical faces of rocks, rarely on exposed horizontal surfaces--at least, I've not often seen it on top of a rock. Patches of C. setchellii are usually about the size of my outstretched hand, although some can be a little larger than that. When you see C. setchellii in the field, it's hard to imagine what type of structure would result in a thallus like this. To figure out what's going on, you need to look at small pieces under a microscope. It's this level of observation that reveals the filamentous nature of C. setchellii.

Phycologists have a few tricks for observing the internal structure of algae. The firm-bodied algae can be examined via cross-section, which can be more or less difficult to make depending on the species. Many simpler thalli, however, can be examined by making a squash, which is exactly what it sounds like: You take a piece of the alga, place it in a drop of water in a slide, and squash it with a cover slip.

A squash of C. setchellii revealed this mishmash of filaments:

'Squash' of Codium setchellii, viewed at 100X magnification
26 June 2018
© Allison J. Gong

This particular squash shows the utricles, which are the pigmented ends of the filaments. It didn't really help me understand how the filaments are organized within the thallus, though. I even tried making a cross-section of the little piece of C. setchellii I have, but it turned to mush. I did at least get one squash that showed the filaments to be arranged in approximately parallel fashion at the outer edge of the thallus.

Utricles of Codium setchellii, viewed at 100X magnification
19 July 2018
© Allison J. Gong

So, seeing the internal structure of Codium setchellii allows me to understand how its closely packed filaments produce the velvety cushion of the thallus that I see in the field. The way that the filaments are aligned allows them to be tightly packed together, resulting in a cushion that is surprisingly firm rather than squishy.

The second species of Codium that we see in northern California is C. fragile, commonly called 'dead man's fingers'. It is a non-native species here, originating in the western Pacific near Japan, and has spread into the Atlantic. In California it has a patchy distribution and, in my experience at least, isn't as common as C. setchellii. I have never seen the two species together at the same site, but according to iNaturalist they do co-occur in some locations.

Like its congeneric species, C. fragile is a dark greenish color and lives in the mid- to low-intertidal. But otherwise it looks entirely different. The thallus morphology must be what gave rise to the common name. I remember learning years ago about a seaweed called 'dead man's fingers' and being disappointed when I saw it for the first time. It didn't look like dead man's anything!

Codium fragile at Asilomar State Beach
16 June 2018
© Allison J. Gong

This thallus resembles a clump of approximately dichotomously branching tubes. It is spongy in texture and is often colonized by bits of a filamentous red alga.

The green alga Codium fragile, with red algal epiphytes
19 July 2018
© Allison J. Gong
Epiphytes on Codium fragile
19 June 2018
© Allison J. Gong

In this case, the red alga (Ceramium sp.) is in turn colonized by the benthic diatom Isthmia nervosa:

Benthic diatoms (Isthmia nervosa) growing as epiphytes on the filamentous red alga Ceramium, viewed under darkfield lighting
19 July 2018
© Allison J. Gong

You might expect Codium fragile, having a tubular morphology, to be more amenable to being examined in cross-section. I can tell you that that isn't the case. It's easy enough to make the first transverse slice of one of those 'fingers', but the second slice, even made with a brand new razor or scalpel blade, results in a pile of mush. I made and looked at several such piles, hoping that at least one would show an approximation of the cross-sectional anatomy of this thallus. The best I could get was this:

Pigmented utricles of Codium fragile
20 July 2018
© Allison J. Gong

At least it shows the radiating arrangement of the filaments. I think this is really interesting. The utricles (pigmented tips of the filaments) are a bit thicker than the unpigmented section of the filaments that make up the interior of the cylinder, but there's still space between them at their distal tips. It is this arrangement that gives Codium fragile a squishiness that C. setchellii lacks.

So there you have it. One genus, two species with radically different gross morphology but similar internal morphology. They're made of the same types of cells, at least. Like I said, I've not seen them in the same place in the field, but here in my blog you can see them side by side.

Codium setchellii at Davenport Landing
13 December 2016
© Allison J. Gong
Codium fragile at Asilomar State Beach
16 June 2018
© Allison J. Gong
%d bloggers like this: