Skip to content

My favorite larva — the actinotroch!

Five days ago I collected the phoronid worms that I wrote about earlier this week, and today I'm really glad I did. I noticed when I first looked at them under the scope that several of them were brooding eggs among the tentacles of the lophophore. My attempts to photograph this phenomenon were not entirely successful, but see that clump of white stuff in the center of the lophophore? Those are eggs! Oh, and in case you're wondering what that tannish brown tube is, it's a fecal pellet. Everyone poops, even worms!

Lophophore of a phoronid worm (Phonoris ijimai)
18 Septenber 2017
© Allison J. Gong

Based on species records where I found these adult worms, I think they are Phoronis ijimai, which I originally learned as Phoronis vancouverensis. The location fits and the lophophore is the right shape. Besides, there are only two genera and fewer than 15 described species of phoronids worldwide.

Two days after I first collected the worms, I was watching them feed when I noticed some tiny approximately spherical white ciliated blobs swimming around. Closer examination under the compound scope showed them to be the phoronids' larvae--actinotrochs! Actinotrochs have been my favorite marine invertebrate larvae--and that's saying quite a lot, given my overall infatuation with such life forms--since I first encountered them in a course in comparative invertebrate embryology at the Friday Harbor Labs when I was in graduate school.

2-day-old actinotroch larva of Phoronis ijimai
22 September 2017
© Allison J. Gong

The above is a mostly top-down view on an actinotroch, which measured about 70 µm long. They swim incredibly fast, and trying to photograph them was an exercise in futility. They are small enough to swim freely in a drop of water on a depression slide, so I tried observing them in a big drop of water under a coverslip on a flat glass slide. At first they were a bit squashed, but as soon as I gave them enough water to wiggle themselves back into shape they took off swimming out of view.

Here's the same photo, with parts of the body labelled:

2-day-old actinotroch larva of Phoronis ijimai
22 September 2017
© Allison J. Gong

The hood indicates the anterior end of the larva and the telotroch is the band of cilia around the posterior end. The hood hangs down in front of the mouth and is very flexible. At this stage the larva possesses four tentacles, which are ciliated and will get longer as the larva grows. These are not the same as the tentacles of the adult worm's lophophore, which will be formed from a different structure when the larva undergoes metamorphosis.

As usual, a photograph doesn't give a very satisfactory impression of the larva's three-dimensional structure. There's a lot going on in this little body! The entire surface is ciliated, and this actinotroch's gut is full of phytoplankton cells. You can see a lot more in the video, although this larva is also a little squished.

I've been offering a cocktail of Dunaliella tertiolecta and Isochrysis galbana to the adult phoronids, and these are the green and golden cells churning around in the larva's gut. However, good eaten is not necessarily food digested, and the poops that I saw the larvae excrete looked a lot like the food cells themselves. Today I collected more larvae from the parents' bowl and offered them a few drops of Rhodomonas sp., a cryptonomad with red cells. This is the food that we fed actinotrochs in my class at Friday Harbor. We didn't have enough time then to observe their long-term success or failure, but I did note that they appeared to eat the red cells.

I don't know if phoronids reproduce year-round. It would be a simple task to run down and collect a few every month or so and see if any worms are brooding. Now that I know where they are, it would also be a good idea to keep an eye on the size of the patch. Some species of phoronid can clone themselves, although I don't know if P. ijimai is one of them. In any case, even allowing for the possibility of clonal division, an increase in the size of the adult population would be at least partially due to recruitment of new individuals. If recruitment happens throughout the year, it follows logically that sexual reproduction is likewise a year-round activity. Doesn't that sound like a nifty little project?

Besides, it's never a bad idea to spend time at the harbor!

Leave a Reply

%d bloggers like this: