Eating, pooping, and turning over

My baby urchins have become scum-eating machines! They are 88 days old now and I am beginning to wonder if I can generate scum fast enough to keep up with them. I did a head count this morning and have three bowls, each of which holds a population of ~100 urchins, and a bowl that contains another 33. The first three bowls are going through food very quickly, and I change their scum slide every 2-3 days. And, since eating results in pooping I change the water every day.

Hungry urchins looking for food:

Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015 © Allison J. Gong
Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015
© Allison J. Gong

After they eat through the food on the upper surface of the slide, the urchins migrate to the lower side and begin munching there. Once most of the food is gone they go on the prowl, and I'll find them on the sides of the bowl looking for something to eat. In the photo, can you tell which urchins are on the underside of the slide? Most of them are, actually. They're the ones where you see a darkish ring around the center; that ring is the peristomial membrane that surrounds the mouth. That's what "peristomial" means, by the way, but you didn't need me to tell you that, did you?

Changing the slide involves using a paintbrush to pick up each urchin and drop it into the new bowl. It's rather tedious but is also the most convenient time to count them. And they do seem happy every time they find themselves in a new bowl with plenty to eat.

Baby urchins with lots of food to eat now:

Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015 © Allison J. Gong
Juvenile sea urchins (Strongylocentrotus purpuratus), 18 April 2015
© Allison J. Gong

Using the clue I gave you up the page, can you find the single urchin on the underside of the slide?

Having pentaradial symmetry means that the urchins don't have forward-backward or left-right axes, and they can and do move in any direction on the horizontal plane. They do, however, have a strong oral-aboral axis, and they definitely have a preference for how their bodies should be oriented with respect to gravity. The normal position is to have the mouth (oral surface) facing downward, with the opposite side (aboral surface) facing up. And for this species, at least, even in the field you don't see them sticking upside-down on overhanging surfaces, unless they have a vertical surface to hang onto as well. These little guys can hang onto the underside of the slide because they're not very heavy yet. Once they get bigger, it'll be a lot more difficult for them.

Setting an urchin down on its aboral surface, with its mouth facing up, will keep it from crawling away very quickly, but sooner or later it will right itself and take off. Even my little babies don't like to be flipped upside-down. This guy was pretty stubborn at first and spent a minute waving its tube feet at me while I looked at it through the microscope, but then took another minute or so to get down to the business of turning over. Don't worry, I cut out the boring first minute so this clip shows only the action sequence.

Quite clearly, urchins don't care about forward-backward or left-right, but they do care about up-down. Like most animals that live in essentially two dimensions, adult urchins prioritize knowing the orientation of one's body with respect to gravity. But remember those bilateral larvae? They swim in any direction in their pelagic, three-dimensional world, although the body always moves through the water in a particular orientation (arm tips first). It seems this is another aspect of metamorphosis that gets overlooked: the transition from a bilateral body that swims in both the horizontal and vertical planes (three body axes, weak response to gravity), to a body with pentaradial symmetry that walks only in the horizontal plane (one body axis, strong response to gravity). Hmm. I'm going to have to think about that for a bit.

Leave a Reply