Skip to content

Autumn is migration season in California. We all know that, in the northern hemisphere, birds fly south for the winter and return north for the summer. And indeed, this is a very good time to go bird watching along the Pacific Flyway, as migrating birds stop to rest and feed at places such as Elkhorn Slough. Here in Santa Cruz, autumn is punctuated by the return of monarch butterflies (Danaus plexippus), roosting in eucalyptus trees at Natural Bridges State Beach and Lighthouse Field.

Since 1997 the Xerces Society for Invertebrate Conservation has been tracking monarch sightings on their migrations between the western U.S. and Mexico. They conduct a volunteer butterfly count every Thanksgiving. More recently, community science data sources such as iNaturalist provide much of the information.

Xerces Society Western Monarch Thanksgiving Count. 2019. Western Monarch Thanksgiving Count Data, 1997-2018. Available at www.westernmonarchcount.org.

This morning, before it got warm, I went to Natural Bridges to see how the monarchs were doing. I wanted to photograph clumps of butterflies dripping from tree branches. It seemed, however, that there aren't as many butterflies as I remember from previous years. The clusters were not nearly as large or as dense as they should be. And the data shown in the figure below do demonstrate a precipitous decline in monarch since 2017. We're still a couple of weeks away from this year's Thanksgiving count, and there is still a chance that the butterflies might arrive in larger numbers.

Xerces Society Western Monarch Thanksgiving Count. 2019. Western Monarch Thanksgiving Count Data, 1997-2018. Available at www.westernmonarchcount.org.

Trained observers know how to estimate the number of butterflies in a cluster like this. The numbers of butterflies at various roosting sites are aggregated to assess overall population sizes.

Monarch butterflies (Danaus plexippus) at Natural Bridges
11 November 2019
© Allison J. Gong

This morning I did see one butterfly that had a tagged wing. It was wearing a green Avery round sticker, with some writing in what looks like black Sharpie. The color of the sticker was very close to the green of the surrounding foliage, so I wasn't even able to see the sticker until I downloaded the pictures from the camera.

Monarch butterflies (Danaus plexippus), including one with a green tag, at Natural Bridges
11 November 2019
© Allison J. Gong

At first I thought the tag resulted from an official scientific project or undertaking, but it turns out that anyone can tag a monarch. The tags are used to track migration of the butterflies. There doesn't seem to be a central depository of tags and their origins, so knowing the color of the tag doesn't tell me where this particular butterfly came from.

Once the sun hits the butterflies and they begin to warm up, the clusters start breaking apart. Butterflies open and close their wings, exposing the darker dorsal surfaces to the sun and warming up their flight muscles. Sometimes they dislodge one another.

On a cool morning like this, many of the butterflies that fell out of the clump couldn't fly yet, and landed on the ground. The boardwalk is perhaps not the safest place for a butterfly to wind up, but at least in a monarch sanctuary such as Natural Bridges the visitors are knowledgeable and look out for the butterflies' safety.

Monarch butterfly (Danaus plexippus) on the boardwalk at Natural Bridges
11 November 2019
© Allison J. Gong

As I wrote before, the butterflies we see at Natural Bridges this year were not born here. This means that their survival to this point has depended on healthy conditions in the Pacific Northwest and the western slopes of the Rocky Mountains, where they lived as caterpillars and emerged from their chrysalises. This also means that planting milkweed for monarch caterpillars in California won't help the butterflies that we see here, although it would help butterflies that are destined to overwinter elsewhere. What will help local butterflies--monarchs and otherwise, and all nectar-feeding insects, in fact--is planting California native plants, to provide them with the nutrition they have evolved to survive on.

1

Sometimes dead things can be very informative. Not in the same way as their living counterparts, of course, but there are times when observing a dead specimen reveals details that cannot easily be discerned when the creature is alive. For example, most living birds don't let you get a close look at their feet. Dead birds, on the other hand, don't complain and try to maim you when you spread their toes and look for webbing. What does webbing have to do with anything? It tells you whether and how a bird swims, of course.

Cormorants are fish-eating predators. Like their relatives, pelicans, they do plunge-dive from the air into the water. However, cormorants are much more streamlined than pelicans and also chase their prey underwater. A bird locomoting in water has two options for propulsion--it can use its wings to "fly" underwater or use its feet to paddle along.

Dead cormorant on Moss Landing State Beach
2019-10-30
© Allison J. Gong

Take a look at the foot on that dead cormorant. It is clearly webbed, eminently suitable for a bird that uses its feet to swim underwater. The location of the feet also has functional significance. Note how far back they are on the bird's body. Obviously this helps increase the overall streamlining of the body. Now think about how submarines move through water: the prop of a submarine is also positioned on the back of the boat. That's probably not a coincidence.

Any trip to the beach brings opportunities to see creatures that have washed up. Or are in the process of washing up. Sometimes even (relatively) large animals end up beached. The big scyphozoan medusae, for example, have little control over where the currents take them, and find themselves in shallow water close to shore.

Pacific sea nettle (Chrysaora fuscescens) in the Moss Landing harbor
2019-10-30
© Allison J. Gong

Animals made of jelly do not fare well when they encounter land. There were several of these dinner-plate-sized jellies drifting and pulsing lazily in very shallow water. A few had been left stranded by the receding tide and were already drying up. Even the ones that were still alive would probably never get back to deeper water. Fortunately for them, they are blissfully unaware of their imminent demise--sometimes lacking a centralized nervous system with its all-knowing brain would be a blessing.

Death, of course, is a part of life and a very important part of nature. Even knowing that, it can be disturbing to see dead animals washed up on the beach. For most people, the shells and whatnot of invertebrates don't seem to count as dead things, but everybody recognizes a dead bird. And there is a natural human tendency to feel sorrier for things that are more like us. From a biologist's perspective, keeping track of dead animals on beaches can give us a lot of information about conditions in the sea. There is a sort of standard death rate, but deviations above what is considered normal may signify that something is going on. There are volunteers who make monthly patrols along beaches in the Monterey Bay Area, collecting data on the various carcasses that wash up. These data are used to evaluate the overall health of the waters within the Monterey Bay National Marine Sanctuary. Knowing about dead things can teach us about what's going on with the living things.

1

People call them air rats or trash birds, but I really like gulls. Especially the western gull (Larus occidentalis), known colloquially among birders as the WEGU. Yes, gulls eat garbage, but that's only because humans are so good at making garbage and leaving it all over the place. Other gulls may travel quite far inland--in fact, the state bird of Utah is the California gull (Larus californicus)--but the WEGU is a California Current endemic species. This means that its natural food sources are the fishes and invertebrates of the California Current, which flows southwards along the west coast of North America. As a result, it lives in only a very narrow strip of coastline, nesting on cliffs and restaurant roofs.

Case in point. Yesterday afternoon I was at Moss Landing with my marine biology students. We had hiked along the road, over the dune to the beach, down the beach a ways, and returned over the dune to circle back to our starting point. The last item of note that we all watched was a western gull hunting along the shoreline of the Moss Landing harbor.

It had grabbed a crab. It looked like a rock crab, but I couldn't tell what species.

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

The crab wasn't dead, and was thrashing around enough to make it difficult for the gull to get a good grip on it.

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

Oops!

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

The crab gets a reprieve!

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

But the gull didn't give up. It reached down, came back with the crab in its beak, and then flew off.

Western gull (Larus occidentalis) with rock crab
2019-10-30
© Allison J. Gong

Sometimes it pays to be persistent!

1

Last Wednesday, 23 October 2019, my marine biology students and I visited the Monterey Bay Aquarium Research Institute (MBARI) in Moss Landing. We were led through the facilities by Kim Fulton-Bennett, the PR officer. MBARI isn't generally open to the public, so this was a rare opportunity to peek behind the scenes at what goes on at this work-class institution.

We got to see whatever equipment the engineers and technicians had lying around. Outside we saw the top part of an instrument that had been removed from its buoy for routine maintenance.

Scientific instrumentation at MBARI
Scientific equipment at MBARI
23 October 2019
© Allison J. Gong
MBARI buoy removed for maintenance
23 October 2019
© Allison J. Gong

One of the few personal items we saw was a certain mooring buoy. It was covered with messages and signatures to a man named Roman Marin. I knew him when he was a graduate student, and had taken a marine plankton course for which I was the TA. I ran into him a few years ago on a previous field trip to MBARI, and we chatted for a few minutes. Anyway, Roman died suddenly about a month ago. I remember hearing of his death and thinking how nice a guy he had been.

Mooring buoy with signatures
Mooring buoy signed with messages to Roman Marin III
23 October 2019
© Allison J. Gong

Here's Kim Fulton-Bennett showing us a sort of mini-rover called a MesoBot. Its job is to dive down to about 1500 meters, explore the mesopelagic, and relay information through a tethering cable back to the mother ship. It's a brand new robot, having been on a only one test dive so far.

Kim Fulton-Bennett points to the main HD camera on the MesoBot
23 October 2019
© Allison J. Gong

And here are some top-down views of the MesoBot:

The MesoBot was being prepped for either additional test dives or the real thing. When it's time to go out to sea it will be loaded into a half-sized shipping container. The other half of the shipping container holds the control room, from which the MesoBot is driven, and a whole bunch of spare parts. When you're two-weeks out to sea and need to replace something, you can't just nip into the nearest Home Depot. Besides, many of the parts that make up these robots are special-built of materials like titanium and can be built only by MBARI engineers.

Control room
23 October 2019
© Allison J. Gong

When it's time to head out to sea, both shipping containers are loaded by crane onto the deck of the research ship. Then off they go!

This is another robot. Nice to see that amidst all this high-tech stuff, they still use ordinary Kim-Wipes at MBARI. Now that's a technology I understand!

Unlike ROVs, which are tethered to a ship and operated remotely by technicians on the ship, autonomous underwater vehicles (AUVs) are programmed before they are deployed. At sea, they roam around according to their program. They may be collecting data for mapping the seafloor, measuring water parameters, or detecting and following a phytoplankton bloom. Kim tells a story of an AUV working off the coast of Oregon, I think. Its job was to map the sea floor. It got itself stuck inside an old lava tube. Since they can only move forward, it couldn't get out. So it sent up an SOS ping and had to be located and then pulled out of the lava tube by an ROV.

This is the lab where AUVs are built:

AUV lab at MBARI
23 October 2019
© Allison J. Gong

Kim always takes us inside to see the big testing pool, and it always feels a little creepy to me. The pool is filled with filtered seawater, and engineers use it to test their devices before sending them out into the ocean.

Testing pool at MBARI
23 October 2019
© Allison J. Gong

These grids at the bottom of the pool are used to test a robot's cameras:

Testing pool at MBARI
23 October 2019
© Allison J. Gong

MBARI is located in Moss Landing, right in the middle of the backwards letter 'C' that is Monterey Bay. Its location is especially strategic because one arm of the Monterey Canyon begins about 100 yards off the jetty at the Moss Landing harbor. This means that the deep sea is relatively easy to get to from this location. One of MBARI's ships, the R/V Rachel Carson, makes day trips into Monterey Bay. Her ship operators, technicians, and scientists can explore the deep sea and come home every night to sleep in their own beds.

Here's Kim pointing out to where the Monterey Canyon begins:

Kim Fulton-Bennett shows students how close the Monterey Canyon is to shore
23 October 2019
© Allison J. Gong

All in all, for anyone interested in marine science and technology, MBARI is the place to be. And even if you're not a marine scientist or a technophile, you certainly can't complain about the view!

Jetty and entrance to Moss Landing harbor
23 October 2019
© Allison J. Gong

2

When we stop to marvel at the wonders of the natural world, we usually forget about all the life that is going on that we don't get to see. But there is a lot happening in places we forget to look. For example, any soil is an entire ecosystem, containing a variety of small and tiny animals, bacteria, and fungi. In fact, if a fungus didn't send up a fruiting body (a.k.a. mushroom) every once in a while, most observers wouldn't realize it was there at all. We humans tend to behave as though something unseen is something that doesn't exist, and I admit to the very same thinking with regards to my own kitchen: anything stored way up in cupboards I can't reach, may as well not be there at all.

But there are places where we can witness the life occurring below our feet, and floating docks in marinas and harbors are some of the best. Of course, the trick is to "get your face down where your feet are", a piece of advice about how to observe life in tidepools that applies just as well to investigating the dock biota. Once you get used to the idea of lying on the docks, which can be more or less disgusting depending on time of year and number of birds hanging around, a whole new world literally blossoms before your eyes.

Some of the flower-looking things are indeed anthozoans ('flower animal') such as this plumose anemone:

Plumose anemone (Metridium senile) at the Santa Cruz harbor
09 October 2019
© Allison J. Gong

and this sunburst anemone:

Sunburst anemone (Anthopleura sola) at the Santa Cruz harbor
09 October 2019
© Allison J. Gong

Other animals look like dahlias would look if they were made of feathers. Maybe that doesn't make sense. But see what I mean?

This is Eudistylia polymorpha, the so-called feather duster worm. These worms live in tough, membranous tubes attached to something hard. They extend their pinnate tentacles for feeding and are exquisitely sensitive to both light and mechanical stimuli. There are tiny ocelli (simple, light-sensing eyes) on the tentacles, and even casting a shadow over the worm causes it to pull in its tentacles very quickly. This behavior resembles an old-fashioned feather duster, hence the common name. These were pretty big individuals, with tentacular crowns measuring about 5 cm in diamter. Orange seems to be the most common color at the Santa Cruz harbor.

One of the students pointed down at something that he said looked like calamari rings just below the surface. Ooh, that sounds intriguing!

And he was right! Don't they look like calamari rings? But they aren't. These are the egg ribbons of a nudibranch. They appeared to have been deposited fairly recently, so I went off on a hunt for the likely parents. And a short distance away I caught the nudibranchs engaging in the behavior that results in these egg masses. Ahem. I don't know if the term 'orgy' applies when there are three individuals involved, but that's what we saw.

Mating aggregation of Polycera atra
09 October 2019
© Allison J. Gong

To give you some idea of how these animals are oriented, that flower-like apparatus is the branchial (gill) plume, which is located about 2/3 of the way down the animal's dorsum. The anterior end bears a pair of sensory organs called rhinophores; they look kind of like rabbit ears. You can see them best in the animal on the left.

When you see more than one nudibranch in such immediate proximity it's pretty safe to assume that they were mating or will soon be mating. Nudibranchs, like all opisthobranch molluscs, are simultaneous hermaphrodites, meaning that each can mate as both a male and a female. The benefit of such an arrangement is that any conspecific individual encountered is a potential mate. The animals pair up and copulate. I'm not sure if the copulations are reciprocal (i.e., the individuals exchange sperm) or not (i.e., one slug acts as male and transfers sperm to the other, which acts as female). In either case, the slugs separate after mating and lay egg masses on pretty much whatever surface is convenient. Each nudibranch species lays eggs of a particular morphology in a particular pattern. Some, such as P. atra, lay eggs in ribbons; others produce egg masses that look like strings of miniature sausages.

Nudibranch (Polycera atra) at the Santa Cruz harbor
09 October 2019
© Allison J. Gong

This is the first time I've seen big Polycera like these. The slugs were about 4 cm long. They eat a bryozoan called Bugula, and there is a lot of Bugula growing at the harbor these days. Maybe that's why there were so many Polycera yesterday. Nudibranchs are the rock stars of the invertebrate world--they are flamboyantly and exuberantly colored, have lots of sex, and die young. They can be very abundant, but tend to be patchy. Quite often an egg mass is the only sign that nudibranchs have been present.

The next time you happen to be at a marina poke your head over the edge and take a look at the stuff living on the dock. Even if you don't know what things are, you should see different textures and colors. With any luck, you'll be pleasantly surprised at the variety of life you find under your feet.

This time of year is when California earns its nickname as the Golden State. It isn't only the dried vegetation blanketing the hillsides. The light itself takes on a golden hue, especially in the morning and evening when the sun is low on the horizon. Photographers call the time periods just after sunrise and just before sunset the 'golden hour' and with good reason. Some of my favorite photos were taken in either the early morning or late evening.

Today the Elkhorn Slough National Estuarine Research Reserve (ESNERR) held an open house event. Booths were set up on the field outside the visitor center, with information on native plants, research projects taking place at the slough, a watershed demonstration, mosquito abatement tactics, face painting for kids, and even a food truck. I hadn't been to the slough since early summer, and when I got the notice about the open house I decided to spend the morning there. I'd hike around a bit, take some pictures, and do some nature journaling.

It certainly was a beautiful morning. It had been swelteringly hot earlier in the week, and fortunately the heat had lessened. There was a strong cool breeze and the sky was a clear blue.

Railroad tracks near Kirby Park
28 September 2019
© Allison J. Gong

In the spring, when I bring my Ecology students to the slough, the landscape is green. The grasses are green and wildflowers are in bloom. Even the pickleweed looks nice and fresh in the spring. Six months later, however, those same grasses are brittle and brown, and most of the wildflowers have long gone to seed and senesced. The live oaks retain their foliage throughout the year, and after two successive wet winters they are lush and green.

Dried grasses at Elkhorn Slough
28 September 2019
© Allison J. Gong

When I arrived at the reserve this morning I spent a few minutes touching base with acquaintances and meeting some new people, then wandered off on one of the trails. It was a little chilly, very welcome after the previous heatwaves, and I sat on a bench to do some painting and looking around. After about half an hour I heard something behind me that didn't sound like the wind blowing through the grasses. It was much more rhythmic and regular--definitely some critter walking through the brush. Very quietly, I stood up and sneaked around the oak tree to see a group of three or four juvenile wild turkeys disappearing into a thicket.

All in all I had a pretty good two hours of bird watching. I don't consider myself a birder, really. I enjoy watching birds, just like I enjoy watching other animals. The competitive aspect of birding is a real turn-off for me. I don't care about keeping a life list and comparing it to anybody else's. That said, I do like to keep note of what I see at a given time and place, because it helps me understand the natural world a little better. For example, the other day I heard my first golden-crowned sparrow of the season, and although I haven't seen it yet, knowing it is there makes me think that autumn has truly arrived.

In past decades, several different groups of people have been working to restore natural habitat to the slough. One of the earlier ideas was to build artificial islands, hoping they would encourage the marsh plants such as pickleweed to recruit and expand to their former abundance. It didn't really work, but the islands do provide places for resident and migratory birds to stop and rest.

Artificial islands at Elkhorn Slough
28 September 2019
© Allison J. Gong

More recently, a consortium of stakeholders has worked to restore marshlands closer to the ocean. They filled in areas that had been completely flooded, and pickleweed recruited there on its own. That area has been restored to a much more natural condition, with meandering waterways and pickleweed that isn't drowned by seawater. Elkhorn Slough falls into several jurisdictions at the federal, state, and local levels, and getting these groups to work together for a common goal can be difficult. The success that they have had speaks to their willingness to cooperate. I think it helps that any actions taken are based on science, rather than politics or economics.

Over the summer, a lot of work was done to eradicate non-native plant species. This work is ongoing, and may very well never be finished, but it is good to the ecosystem to try. An island called Hummingbird Island has been rid of invasive eucalyptus trees, and now the only trees there are native live oaks and cypress. The trail I hiked went through several areas where trees has been cut down.

Area of Elkhorn Slough where invasive trees have been removed
28 September 2019
© Allison J. Gong

Remember that train I mentioned? Here it is, traveling through the slough at about midday.

The Coast Starlight crossing through Elkhorn Slough
28 September 2019
© Allison J. Gong

Sometimes visitors to the slough don't believe that those tracks are actually used.

Much of the land that the ESNERR sits on used to be a dairy. These barns are, I think, the only dairy buildings that remain. Visitors aren't allowed into Little Barn, but we can walk through Big Barn. It is used for occasional equipment storage and is inhabited by barn owls. Sometimes we find owl pellets on the ground beneath the owl boxes mounted in the barn. It is also not unusual to find pieces of those old-fashioned glass milk bottles near the trails.

Big Barn (background) and Little Barn (foreground) at Elkhorn Slough
28 September 2019
© Allison J. Gong

When I was a little kid I disliked autumn because the shortening days meant that summer was over and winter was coming. As I grow older, though, and gain a presumably more mature outlook on life, I am more able to appreciate the glory of autumn. I still think spring is my favorite season of the year, but autumn in California is indeed golden and lovely.

1

We usually think of sea stars as the colorful animals that stick to rocks in the intertidal. You know, animals like Pisaster ochraceus (ochre star) and Patiria miniata (bat star). I see these animals all the time in the intertidal, and if you're a regular reader of this blog you've probably seen the photos that I post here. Given how prominent P. ochraceus and P. miniata can be in the rocky intertidal, it may be a bit of a surprise to learn that not all sea stars live on rocks. In fact, some can't even really stick to a rock.

This morning I was meandering through the Seymour Center when I stopped at a recently refurbished tank. The new inhabitants are a couple of curlfin sole (Pleuronichthyes decurrens) and their secretive and strange roommate. Here's one of the flat fish:

Photo of curlfin sole (Pleuronichthyes decurrens)
Curlfin sole (Pleuronichthyes decurrens) at the Seymour Marine Discovery Center
5 September 2019
© Allison J. Gong

The other fish was hiding up against the wall in one of the back corners and didn't come down until it was feeding time.

The secretive roommate was all but invisible. Here's a photo. Ignore the fish's tail. Do you see anybody else?

Who is this?

Fortunately for all of the tank's inhabitants, feeding time was just around the corner. I knew what would happen, so I stuck my phone on the glass and recorded some video. Keep an eye on the upper left-hand corner. Watching the fish eat is entertaining, too. Just how do they manage with those tiny sideways mouths?

It's not the greatest bit of video, but did you see what happened? That creature emerging from the sand is Astropecten armatus, a sea star that lives in sand. And did you notice how fast it moves? Most of the time it is buried under the sand and usually comes out only to grab food. Every once in a while I'll find it on one of the walls but most of the time it is essentially invisible to human viewers on the other side of the glass.

Astropecten armatus
5 September 2019
© Allison J. Gong

All spread out, this Astropecten is probably a little smaller than my hand. It has a smooth-ish aboral (i.e., top) surface, lacking the spiny protuberances that Pisaster has. The texture of the aboral surface is similar to that of the bat star, Patiria miniata. The species epithet, armatus, means 'armored' and refers to the row of marginal plates along the perimeter of the body. These plates bear a row of spines that point up and another row that point down. Astropecten is unusual among sea stars for having suckerless tube feet. Its tube feet are pointed, and instead of being super grippy, work to push sand around so the animal can sort of bulldoze its way along. As always, form follows function!

Olivella biplicata at Whaler's Cove
3 January 2019
© Allison J. Gong

In the wild, A. armatus lives on sandy flats, rarely exposed even at low tide. One of its favorite prey items is the olive snail, Olivella biplicata. Imagine this life-and-death encounter taking place below the surface of the sand: Olivella is burrowing through the sand, minding its own business and unaware that Astropecten is following the slime trail it (Olivella) left behind. Astropecten catches up to Olivella, shoves a couple of arms into the sand around Olivella, engulfs the snail, and swallows it whole. Eventually an empty Olivella shell is spat out. Incidentally, many small hermit crabs, especially Pagurus hirsutiusculus and juveniles of other Pagurus species, live in Olivella shells. I've often wondered why there are so many empty but intact olive snail shells for the hermit crabs to find, and now suppose that Astropecten's method of feeding might have something to do with it.

Interesting star, this Astropecten. I'm really happy that it is on exhibit again, because even most visitors will never see it, watching it come out to feed is always fun.

1

A few weeks ago I was contacted by a woman named Kathleen, who reads this blog and is herself a student of the seaweeds. She said that she studies a site up at Pescadero, about an hour up the coast from me. We decided to meet up during the series of low tides around the Fourth of July so we could explore the area together, and she could help me with my algal IDs. My friend and former student, Lisa, joined us for the fun.

Map of the Pescadero Point region
05 July 2019
© Google

The most prominent landmark along the coastline in this region is Bird Island, which is accessible only at minus tides, when it is revealed to be a peninsula. It smells pretty much as you probably imagine, especially if you happen to be downwind. Given the prevailing wind direction, that means that the closer you get to Bird Island from the south, the stronger the smell. Kathleen's site is the south side of Pescadero Point, fortunately far enough south of Bird Island that the smell isn't noticeable from that distance. She has a permanent transect that she surveys regularly, taking note of algal abundances and distributions.

South side of Pescadero Point
05 July 2019
© Allison J. Gong

One of the notable things we all noticed was the conspicuous presence of big, healthy ochre stars (Pisaster ochraceus)--many hand-sized or larger. I also saw many smaller stars, in the 2 cm size range, but these were hidden in crevices or under algae. The big guys and gals, were out there in plain sight.

Constellation of ochre stars (Pisaster ochraceus) at Pescadero Point
05 July 2019
© Allison J. Gong

However, not all was perfect for the sea stars at Pescadero Point. One of the ochre stars showed symptoms of sea star wasting syndrome (SSWS). It had autotomized two of its arms and had a sloppy, goopy open wound that extended into the oral disc. It was also mushy when I touched it and didn't firm up the way healthy stars do. This star is a goner, even though it doesn't know it yet. That's the beauty (and in this case, tragedy) of an entirely decentralized nervous system.

Sick ochre star (Pisaster ochraceus) at Pescadero Point
05 July 2019
© Allison J. Gong

After I mentioned having seen a sick sea star we compared notes on the current status of SSWS. What more do we know about the syndrome, and any recovery of stars? We came to the consensus that the oubreak was probably caused by a perfect storm of ecological conditions--an opportunistically pathogenic virus that is ubiquitous in the environment, environmental stresses, and high population densities both intertidally and subtidally. Kathleen asked me what I had been seeing recently. I told her that Pisaster ochraceus, one of the species that melted away in spectacular fashion, seems to be making a strong comeback in the places where I used to see it in large numbers. Even though every once in a while i see a sick star, places like Natural Bridges and Davenport Landing are again populated by lots of hand-sized-or-bigger ochre stars. Which of course brings up the question of where these large stars suddenly came from. I think they were tiny stars when the outbreak occurred, hiding in the mussel beds. Many of them died, but as with any plague there are always some survivors. Those lucky few managed to hang on and creep into the niches that opened up when so many adults died. But would little juveniles only a few millimeters in diameter be able to grow to the sizes that we're seeing now, in ~5 years? I suppose that's not out of the question, and we know that when fed well in the lab they grow very quickly, but individual growth rates in the field are difficult to measure.

Another animal goody that we saw were clusters of the bryozoan, Flustrellidra corniculata. Unlike most bryozoans, which are calcified and crunchy, Flustrellidra colonies are soft and flexible. They look more like strange, thick pieces of brown algae than anything recognizable as a bryozoan.

Flustrellidra corniculata at Pescadero Point
05 July 2019
© Allison J. Gong

We were there to do some basic marine botany, and although I kept getting distracted by the invertebrates I did also pay attention to the floral aspect of Kathleen's site. She pointed out that Laminaria sinclairii, one of the small low-intertidal kelps, was always abundant. It's true, there were rocks that were entirely covered with L. sinclairii, like this one:

Laminaria sinclairii at Pescadero Point
05 July 2019
© Allison J. Gong

Laminaria sinclairii and L. setchellii are the most common intertidal species of the genus on our coast. They are easily distinguishable because L. sinclairii has a single undivided blade arising from the stipe, and L. setchellii has a blade that is subdivided into fingerlike sections; in fact, the former species epithet for L. setchellii was dentigera, referring to 'finger'.

Laminaria setchellii at Franklin Point
15 June 2018
© Allison J. Gong

See the difference?

There is a third species of Laminaria on our coast, that I knew only by reputation. What I'd heard is that Laminaria ephemera resembles L. sinclairii except for the morphology of the holdfast: L. ephemera has a discoid, suction-cup holdfast while L. sinclairii has the more typical hapterous holdfast (made of intertwined cylindrical projections). I think I might have seen a few L. ephemera at Pescadero. These thalli appear to have suction-cup holdfasts, don't they?

Laminaria ephemera(?) at Pescadero Point
05 July 2019
© Allison J. Gong
North side of Pescadero Point
05 July 2019
© Allison J. Gong

We didn't spend much time on the south side of the point, but scrambled over the rocks to the north side, where there are stretches of sandy beach between rocky outcrops. Bird Island is that peninsula in the top of the picture. As I mentioned above, it is connected to the beach only at low tide, so while I think of it as a peninsula, it really is an island most of the time.

Once on the north side of the point we slowed down and made some more attentive observations of the flora. It turns out that this portion of our intertidal visit was sponsored by the letter 'P'. One of the things we all noticed was the prevalence of Pyropia, the filmy red alga that is common in the high-mid intertidal. The thallus of Pyropia consists of a single layer of cells connected to form a very thin elastic tissue. It dries to a crisp in the sun, but rehydrates when the tide returns. You've probably encountered Pyropia before without realizing it: nori is made of Pyropia that has been shredded and processed into paper-like sheets, used for things like sushi rolls.

Although it looks uniformly blackish-green when packaged for human consumption, Pyropia's color in life is a glorious iridescent mixture of greens, olives, and purples. It is another of those easily overlooked denizens of the intertidal that deserves a much closer look than it usually gets.

Pyropia sp. at Pescadero Point
05 July 2019
© Allison J. Gong
Plocamium cartilagineum at Pescadero Point
05 July 2019
© Allison J. Gong

Another common red alga at Pescadero Point is the delicate and lacy Plocamium cartilagineum. This is one of the hobbyist phycologist's favorite species because it presses like a dream and makes great gifts or wall decorations. As I wrote about here, Plocamium has a doppelganger: Microcladia coulteri. These algae share a similar morphology, but as I mentioned in the previous post, natural history makes it easy to distinguish between the two in the field. Microcladia is epiphytic, growing on other algae, and Plocamium is not.

Plocamium grows on rock surfaces in the mid-to-low tide regions. It sometimes gets surrounded or even buried in sand, but if you dig down far enough you'll always find the holdfast attached to a rock (or shell or other hard object).

Last month I wrote about Postelsia palmaeformis, the sea palm. We found a most handsome specimen washed up on the beach. Note that, as per usual, it wasn't the holdfast of the kelp that failed. The holdfast did its job perfectly well, and it was the mussel it was attached to that broke free of the rock.

Postelsia palmaeformis at Pescadero Point
05 July 2019
© Allison J. Gong

The sad thing about finding great specimens like this on the beach is the realization that it will soon be dead. In fact, so will the mussel. Such is the price organisms pay for failing to hang onto their substrate (or for their substrate's failure to hang on). The rocky intertidal is a harsh place to live, and can be unforgiving of mistakes and bad decisions.

That's part of the reason I find it so fascinating. Most wild organisms live on the knife-edge of survival, with only the thinnest margin between life and death. Every organism has its predators, pathogens, and parasites to deal with on a daily basis, in addition to the physical stresses of its habitat. All of the organisms that I study in the intertidal are marine--not freshwater or even brackish, although some can tolerate reduced salinity (and on the other extreme, some tolerate very high salinity). They evolved to live in the ocean, in a habitat where the ocean abandons them for a few hours twice a day. Yet as improbable as that sounds, the diversity in the intertidal is astonishingly high. Obviously, for those that can live there, the trade-off between stability and safety is worthwhile. Nature will always find a way.

Be honest now. When you think of clams, what comes to mind? If you're like most people, visions of clams steamed in white wine, garlic, and butter might dance in your head. Or perhaps clams in cioppino or a hearty chowder would be your go-to. In any case, I doubt that clams, as actual living creatures, occupy much of your brain. Because let's face it, at first glance even living clams aren't the most energetic and charismatic animals. Most of the really cool things that they do, like suck water through their shells for filter feeding and gas exchange, they do while buried in the mud.

When you think about it, though, just the fact that clams live in the sand or mud while depending on water that may be quite far from them is rather amazing. All animals require oxygen, and for marine animals that oxygen comes from seawater. Animals that move freely through the water have access to a ready supply of oxygen. But clams live more or less fixed lives encased in sediment, and water can be quite far from their bodies. How, then, do they pull water into their shells and across their gills? They use siphons, which can reach up to the surface of the sediment into the water column.

Siphons of a pholad bivalve at Pleasure Point
16 July 2018
© Allison J. Gong

A clam has two siphons--one pulls clean water into the shells and the other expels water from the shells. This arrangement allows for one-way flow across the gills, which serve double duty as both feeding and gas exchange organs. The siphons themselves are somewhat muscular and can open and close, but it's the ciliary action of the gills that create the actual water current. In a living clam the only visible body parts are the siphons, which in some species (e.g., geoducks) are so large that they cannot be entirely withdrawn into the shells.

Of the two siphons in the picture above, can you tell which is the incurrent and which is the excurrent? What do you think is the functional significance of that network of white structures that cover the opening of one of the siphons?

Not only do clams live buried in sediment, but some of them can actually bore into rocks. These boring clams, the pholads, have shells that are morphologically and functionally different from the typical clams you've encountered in cioppino. They are elongated on the anterior-posterior axis and the anterior ends are heavily sculpted and fortified to grind into rock. Of course, they can do this only in areas where the rock is soft--you don't see pholads burrowed into granite, for example.

Pholad siphons at Pleasure Point
16 July 2018
© Allison J. Gong

Fortunately for the pholads, much of the rock in the Santa Cruz area is a soft mudstone, easily eroded and burrowed into. I've seen pholads at intertidal sites from Capitola to Davenport. Both dead pholads and live pholads can be seen, but it takes a careful eye to spot the live ones. Of course, all you'd ever see of a living pholad is the siphons. When the animal dies, though, the shells are left behind. As the mudstone continues to erode the shells can be exposed, just like fossils. And as a matter of fact, the mudstone formations around here are known for their fossil contents. I think, but am not certain, that these empty shells in holes belong to Parapholus californica.

Pholad shells at Natural Bridges
8 June 2019
© Allison J. Gong

How does a clam burrow into even soft rock? A description of burrowing activity of Parapholus californica can be read here. As you can imagine, it's a slow and continuous process. Fortunately, these clams don't have much else going on and can take their time. In some ways, their lifestyle sounds pretty ideal: hang out in a snug burrow where predators can't get at your soft body and extend your siphons out to bring in clean water for food and oxygen. Sure, when it comes to reproduction the only option available is free-spawning and hoping for the best, but that has proven to be a successful strategy for countless generations of your kind. Aside from the cost of making gametes, it's a pretty low-energy way to produce offspring. Maybe the old saying "happy as a clam" isn't that far off the truth.

%d bloggers like this: